首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
通过高温固相反应合成了一系列宽谱带发射黄色荧光粉Sr_8MgAl(PO_4)_7∶x Eu~(2+)(SMAP∶x Eu~(2+)),并对其物质结构、发光性能及其在白色发光二极管(WLED)领域的应用进行了探究。X射线衍射(XRD)测试结果表明,SMAP∶x Eu~(2+)系列荧光粉具有单斜结构和C2/m空间群,激活剂Eu~(2+)离子能够很好地进入SMAP基质中并占据Sr~(2+)离子的晶格位点。漫反射光谱分析显示SMAP基质属于宽带隙材料,带隙宽度为3.60 e V。此外,SMAP∶x Eu~(2+)具有较宽的激发范围(280~500 nm),对应于Eu~(2+)离子的4f~7→4f~65d~1跃迁;在380 nm近紫外光激发下,呈现出450~800 nm的多发光中心的非对称黄光发射,发射峰位于590 nm处。基于高斯多峰拟合结果,得到3个发光中心,分别位于528、600和680 nm。最后,将已制备的黄色荧光粉SMAP∶0.05Eu~(2+)与商业化蓝粉Ba Mg Al_(10)O_(17)∶Eu~(2+)混合涂覆到400 nm芯片上制得色温较好(3 344 K)、显色指数较高(90.1)的WLED。  相似文献   

2.
采用水热法制备出Ca9Y(PO47:Ce3+,Tb3+纳米荧光粉,通过XRD、SEM和荧光光谱等对样品进行了分析,研究在Ca9Y(PO47基质中引入Ce3+,Tb3+离子对发光性能的影响规律。研究发现因Tb3+离子自身能量交叉驰豫的存在,使得单掺Tb3+时,通过调节Tb3+离子的浓度可以实现对发光颜色的控制。同时研究了Ce3+-Tb3+之间的能量传递为电多极相互作用的偶极-四极机制,Ce3+-Tb3+之间最大的能量传递效率为55.6%。Ca9Y(PO47:Ce3+,Tb3+的发光颜色可以通过激活离子之间的能量传递和共发射得到可控调节。SEM分析表明荧光粉颗粒尺寸在100 nm左右,分散性好。  相似文献   

3.
采用优化的高温固相方法制备了稀土离子Eu3+和Tb3+掺杂的La7O6(BO3)(PO42系荧光材料,并对其物相行为、晶体结构、光致发光性能和热稳定性进行了详细研究。结果表明,La7O6(BO3)(PO42:Eu3+材料在紫外光激发下能够发射出红光,发射光谱中最强发射峰位于616 nm处,为5D07F2特征能级跃迁,Eu3+的最优掺杂浓度为0.08,对应的CIE坐标为(0.610 2,0.382 3);La7O6(BO3)(PO42:Tb3+材料在紫外光激发下能够发射出绿光,发射光谱中最强发射峰位于544 nm处,对应Tb3+5D47F5能级跃迁,Tb3+离子的最优掺杂浓度为0.15,对应的CIE坐标为(0.317 7,0.535 2)。此外,对2种材料的变温光谱分析发现Eu3+和Tb3+掺杂的La7O6(BO3)(PO42荧光材料均具有良好的热稳定性。  相似文献   

4.
采用高温固相法合成了系列单相Ca(1-x-y)Al2O4:Eu2+x,Nd3+y(0≤x≤0.045,0≤y≤0.0037)粉末样品,并表征了其发光特性.研究结果表明,样品的发射光谱为最大发射峰位于440nm的宽带谱,属于Eu2+的4f65d→4f7跃迁.通过对Eu2+,Nd3+掺杂量与样品发光性能之间关系的研究发现,Eu2+和Nd3+最佳掺杂量分别为x=0.00125和y=0.0025,并且Nd3+对改善蓝色长余辉材料CaAl4:Eu2+的余辉性能具有重要的作用.在最佳掺杂条件下,样品的余辉时间可达1000min,初始亮度大于1200mcd/m2,60min后发光粉的亮度仍然在10mcd/m2以上.利用正电子湮灭技术和热释光技术,研究了Eu2+和Nd3+对CaAl2O4:Eu2+,Nd3+材料的发光性能的影响.  相似文献   

5.
采用微波固相法制备了CaWO4xEu3+,ySm3+,zLi+红色荧光粉。测量样品的XRD图、激发谱、发射谱及发光衰减曲线,研究并分析了Eu3+、Sm3+、Li+的掺杂浓度,对样品微结构、光致发光特性、能量传递及能级寿命的影响。结果表明,Eu3+、Sm3+、Li+掺杂并未引起合成粉体改变晶相,仍为CaWO4单一四方晶系结构。Eu3+、Sm3+共掺样品中,Sm3+掺杂为3%时,Sm3+对Eu3+的能量传递最有效。Li+掺杂起到了助熔剂和敏化剂的作用,使样品发光更强。在394 nm激发下,与CaWO4:3%Eu3+样品比较,3%Eu3+、3%Sm3+共掺CaWO4及3%Eu3+、3%Sm3+、1%Li+共掺CaWO4样品的发光分别增强2倍及2.4倍。同一激发波长下,单掺Eu3+样品寿命最短,Sm3+、Eu3+共掺样品随Sm3+浓度增加,寿命先减小后增加,且掺杂了Li+的样品比不掺Li+的样品5D0能级寿命有所增加。  相似文献   

6.
采用硅酸盐作为基质材料,通过高温固相法合成了Li4SrCa(SiO42:Eu3+红色荧光粉。通过X射线粉末衍射、X射线光电子能谱、透射电镜和荧光光谱,对所得样品的物相、形貌及其发光性能进行了表征分析。结果表明,掺入Eu3+后,Li4SrCa(SiO42的晶体结构并没有发生改变。在393 nm光激发下,荧光粉的荧光光谱中693 nm处发射峰强度最强。以693 nm作为监测波长,荧光激发峰分别为361 nm(7F05D4)、375 nm(7F05G3)、413 nm(7F05D3)、393 nm(7F05L6)和464 nm(7F05D2),即样品对近紫外和蓝光有较好的吸收。利用发射光谱研究了Eu3+掺杂浓度(物质的量分数)对荧光粉发光强度的影响。当Eu3+的掺杂浓度x=0.10时,样品发射强度最强,发射红光,其色坐标为(0.637 5,0.353 7)。通过Dexter强度与浓度关系分析了浓度猝灭机制。  相似文献   

7.
采用高温固相法在空气中合成了Ba1.97-yZn1-xMgxSi2O7:0.03Eu,yCe3+系列荧光粉。分别采用X-射线衍射和荧光光谱对所合成荧光粉的物相和发光性质进行了表征。在紫外光330~360 nm激发下,固溶体荧光粉Ba1.97-yZn1-xMgxSi2O7:0.03Eu的发射光谱在350~725 nm范围内呈现多谱峰发射,360和500 nm处有强的宽带发射属于Eu2+离子的4f65d1-4f7跃迁,590~725 nm红光区窄带谱源于Eu3+5D0-7FJ (J=1,2,3,4)跃迁,这表明,在空气气氛中,部分Eu3+在Ba1.97-yZn1-xMgxSi2O7基质中被还原成了Eu2+;当x=0.1时,荧光粉Ba1.97Zn0.9Mg0.1Si2O7:0.03Eu的绿色发光最强,表明Eu3+被还原成Eu2+离子的程度最大。当共掺入Ce3+离子后,形成Ba1.97-yZn0.9Mg0.1Si2O7:0.03Eu,yCe3+荧光粉体系,其发光随着Ce3+离子浓度的增大由蓝绿区经白光区到达橙红区;发现名义组成为Ba1.96Zn0.9Mg0.1Si2O7:0.01Ce3+,0.03Eu的荧光粉的色坐标为(0.323,0.311),接近理想白光,是一种有潜在应用价值的白光荧光粉。讨论了稀土离子在Ba2Zn0.9Mg0.1Si2O7基质中的能量传递与发光机理。  相似文献   

8.
采用水热法制备出Ca_9Y(PO4)7∶Ce~(3+),Tb~(3+)纳米荧光粉,通过XRD、SEM和荧光光谱等对样品进行了分析,研究在Ca_9Y(PO4)7基质中引入Ce~(3+),Tb~(3+)离子对发光性能的影响规律。研究发现因Tb~(3+)离子自身能量交叉驰豫的存在,使得单掺Tb~(3+)时,通过调节Tb~(3+)离子的浓度可以实现对发光颜色的控制。同时研究了Ce~(3+)-Tb~(3+)之间的能量传递为电多极相互作用的偶极-四极机制,Ce~(3+)-Tb~(3+)之间最大的能量传递效率为55.6%。Ca_9Y(PO4)7∶Ce~(3+),Tb~(3+)的发光颜色可以通过激活离子之间的能量传递和共发射得到可控调节。SEM分析表明荧光粉颗粒尺寸在100 nm左右,分散性好。  相似文献   

9.
以B2O3为助熔剂,在1 350 ℃、还原性气氛下成功制备了SrAl2O4单相粉末样品。用同样的方法制备了系列单相Sr1-x-yAl2O4:Eu2+x,Dy3+y·nB2O3(0.005≤x≤0.07, 0.01≤y≤0.05,0.05≤n≤0.25)样品并表征了其长余辉发光特性。结果表明,最佳的Eu2+含量为0.02。辅助激活离子Dy3+在Sr0.98Al2O4:Eu2+0.02中的掺杂在一定范围内可以显著提高亮度和余辉时间,最佳Dy3+含量为0.03。研究不同B2O3含量对Sr0.95Al2O4:Eu2+0.02,Dy3+0.03发光性能的影响,结果说明最佳的B2O3含量为n=0.1,余辉肉眼可见(≥0.32 mcd·m-2)时间达4 000 min。利用正电子湮灭技术和热释光技术,研究和讨论了B2O3对Sr0.95Al2O4:Eu2+0.02,Dy3+0.03的发光和余辉性能的影响,结果表明B2O3的添加有助于Dy3+在晶格中形成深度合适、有益于余辉的空位缺陷。  相似文献   

10.
采用共沉淀法及1 200 ℃后续煅烧4 h,成功制备了CaSb2O6:Bi3+,Eu3+荧光粉,并对其结构及发光性能进行了研究。所制备荧光粉颗粒为六边形类圆饼状,平均尺寸在100~600 nm之间。对CaSb2O6:Bi3+,Eu3+发光的机理分析表明,Bi3+对Eu3+的发光存在高效的敏化与能量传递。当Bi3+和Eu3+的掺杂浓度分别为0.5%和8%,Eu3+位于580 nm(5D07F0 )处的荧光发射显著增强,Bi3+,Eu3+共掺样品的荧光强度是CaSb2O6:Eu3+的10倍左右。调节Bi3+/Eu3+离子掺杂比,色坐标呈现了从蓝、白光到红光的变化,表明该荧光粉可分别作为蓝或红色荧光粉使用,甚至可实现从蓝、白光到红光的自由调控,这为白光LED荧光粉的发展提供了参考。  相似文献   

11.
Sb3+-doped Sr3(PO4)2 crystals has been synthesized using phosphoric acid, strontium hydroxide and antimony powder as the raw materials through a hydrothermal reaction method. The crystallinity and the microstructure were investigated using X-ray diffraction and scanning electron microscopy. The photoluminescent property was investigated using luminescent spectrometer. Phase pure Sr3(PO4)2 crystal was obtained and it has a shape of hexagonal rod. It showed the emission and excitation peaks at 396, 250, and 215 nm, respectively, indicating that the emission is attributed to 3P1-1S0 transition and the excitation is attributed to 1S0-3P1 and 1S0-1P1 transition. It was also observed that the intensity of photoluminescence is thermally stable up to 673 K.  相似文献   

12.
采用高温固相法合成了Ca9La(PO4)7:Dy3+发光材料. 荧光粉的晶体结构和微观尺寸由X射线粉末衍射(XRD)仪和扫描电子显微镜(SEM)测定. 光致激发和发射光谱发光揭示了材料的光学特性. 实验结果显示: Ca9La(PO4)7:Dy3+能够有效吸收紫外-可见光(300-460 nm)而被激发, 呈现一系列的吸收峰. 样品在350 nm近紫外光激发下, 有较强的蓝光(481 nm)和黄光(573 nm)两个窄带发射, 混合成优质的白光发射, 该白光色坐标在国际照明委员会(CIE)色品图中分布在无色点D65 (0.313, 0329)周围. 随着掺杂Dy3+离子的摩尔分数的增加, 两种发射均发生浓度猝灭现象, Dy3+离子的最佳掺杂为0.05(摩尔分数), 电偶极-电偶极相互作用是主要的猝灭机理.  相似文献   

13.
Ce3+,Tb3+,Eu3+共掺杂Sr2MgSi2O7体系的白色发光和能量传递机理   总被引:1,自引:0,他引:1  
通过正交试验,采用高温固相法制备了Sr2-x-y-zMgSi2O7∶xCe3+,yTb3+,zEu3+系列样品.使用X射线衍射仪和荧光光谱仪表征了样品的物相和发光性质,并讨论了Ce3+-Tb3+-Eu3+共掺杂Sr2MgSi2O7体系中的能量传递过程.实验结果表明,在327 nm波长激发下,所合成荧光粉的发射峰主要位于387 nm(蓝紫)、542nm(绿)和611 nm(红)处;分别以387,542和611 nm为监控波长,所得激发光谱显示荧光粉在327 nm处有最好的激发.在327 nm光激发下,系列样品发光进入白光区.最优化的荧光粉为Sr1.91MgSi2O7∶0.01Ce3+,0.05Tb3+,0.03Eu3+,其色坐标为(0.337,0.313),是一种潜在的发光二极管(LED)用白色荧光粉.  相似文献   

14.
白色荧光粉NaGd(MoO42:Dy3+,Eu3+的水热合成及发光性能   总被引:1,自引:0,他引:1  
采用谷氨酸辅助水热法合成了八面体形NaGd(MoO4)2:Dy3+,Eu3+白色荧光粉.X射线衍射结果表明,合成的样品为四方晶系的NaGd(MoO4)2纯相.扫描电子显微镜照片显示所制备的粒子为八面体形,各边长约为2μm.荧光光谱结果表明,在NaGd(MoO4)2:4%Dy3+,yEu3+(y=0,0.5%,0.6%,0.7%,0.8%,0.9%,1.0%)样品中,随着Eu3+掺入量的增加,Dy3+的发射峰逐渐减弱,而Eu3+的发射峰逐渐增强,说明Dy3+-Eu3+之间存在能量传递.通过色坐标图可知,当Eu3+掺杂量y=0.9%时,荧光粉的色坐标(0.338,0.281)与标准的白光色坐标(0.33,0.33)接近,表明NaGd(MoO4)2:4%Dy3+,0.9%Eu3+是很好的近紫外光激发下的白色荧光粉.  相似文献   

15.
采用优化的高温固相方法制备了稀土离子Eu~(3+)和Tb~(3+)掺杂的La_7O_6(BO_3)(PO_4)_2系荧光材料,并对其物相行为、晶体结构、光致发光性能和热稳定性进行了详细研究。结果表明,La_7O_6(BO_3)(PO_4)_2∶Eu~(3+)材料在紫外光激发下能够发射出红光,发射光谱中最强发射峰位于616 nm处,为5D0→7F2特征能级跃迁,Eu~(3+)的最优掺杂浓度为0.08,对应的CIE坐标为(0.610 2,0.382 3);La_7O_6(BO_3)(PO_4)_2∶Tb~(3+)材料在紫外光激发下能够发射出绿光,发射光谱中最强发射峰位于544 nm处,对应Tb~(3+)的5D4→7F5能级跃迁,Tb~(3+)离子的最优掺杂浓度为0.15,对应的CIE坐标为(0.317 7,0.535 2)。此外,对2种材料的变温光谱分析发现Eu~(3+)和Tb~(3+)掺杂的La_7O_6(BO_3)(PO_4)_2荧光材料均具有良好的热稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号