首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Metastability effects in microcrystalline silicon (μc-Si:H) thin films have been investigated using dark conductivity, σD, photoconductivity, σph, and sub-bandgap absorption methods. Nitrogen and inert gasses can cause reversible aging effect in conductivities but not in the sub-bandgap absorption. However, DI water and O2 gas treatment result in both reversible and nonreversible effects in conductivities as well as in the sub-bandgap absorption. Only oxygen affected the dark conductivity reversibly in amorphous silicon, a-Si:H, films, other results were unaffected from the aging and annealing processes applied.  相似文献   

2.
We have prepared highly-crystallized germanium (Ge) films on quartz and evaluated their local charge trapping and electrical conduction properties from topographic and surface potential images simultaneously taken by a conductive atomic force microscopy (AFM) during and after current application to Ge films. By applying a bias of 10 V at which the current of ~ 8 mA flows between the co-planer electrodes on Ge films, the surface potential image which was uniform before bias application shows in-plane inhomogeneity within ~ 1.0 mV commensurate with the surface morphology. Such potential images remained inhomogeneous at zero bias for more than two hours after bias application. The inhomogeneous potential images can be interpreted in terms of the difference in electron concentration in highly-crystallized Ge films presumably caused by electron charging in the grain boundaries, indicating direct detection of electrically separated grain structures and resultant percolation current pass.  相似文献   

3.
A.N. Trukhin  K.M. Golant 《Journal of Non》2009,355(34-36):1719-1725
Photoluminescence (PL) spectra and kinetics of high purity amorphous silicon dioxide with ultra low hydroxyl content is studied under the excitation by F2 excimer laser (157 nm wavelength) pulses. Materials synthesized in the SPCVD plasma chemical process are studied before and after fusion. Two bands are found in the PL spectra: one centered at 2.6–2.9 eV (a blue band) and the other at 4.4 eV (a UV band). Luminescence intensity of unfused material is found to increase significantly with exposure time starting from a very small level, whereas in fused counterpart it does not depend on irradiation time. Both bands show complicated decay kinetics, to which add exponential and hyperbolic functions. The UV band of the unfused material is characterized by decay with exponential time constant τ  4.5 ns and hyperbolic function tn, where n = 1.5 ± 0.4. For the blue band the hyperbolic decay kinetics with n  1.5 extends to several milliseconds, gradually transforming to the exponential one with τ = 11 ± 0.5 ms. In fused glass relative contribution of the fast component to the UV band is small whereas for the blue one it is great, that allows one to more accurately determine the hyperbolic law factor n = 1.1 ± 0.1 typical for tunneling recombination. Simultaneous intracenter and recombination luminescence, the later occurring with the participation of laser radiation induced defects, add particular features to the decay kinetics. Spectra of the above luminescence processes are different. A less sharp position of bands is associated with the recombination luminescence. The origin of the observed PL features we attribute to the presence of oxygen deficient centers in glass network in the form of twofold coordinated silicon. Such centers being affected by network irregularities can be responsible for the recombination PL component. A great variety of network irregularities is responsible for centers’ structural inequivalence, which causes a non-uniform broadening of PL spectral and kinetic parameters.  相似文献   

4.
Insight into the oxidation mechanism of microcrystalline silicon thin films has been obtained by means of Fourier transform infrared spectroscopy. The films were deposited by using the expanding thermal plasma and their oxidation upon air exposure was followed in time. Transmission spectra were recorded directly after deposition and at regular intervals up to 8 months after deposition. The interpretation of the spectra is focused on the Si-Hx stretching (2000-2100 cm−1), Si-O-Si (1000-1200 cm−1), and OxSi-Hy modes (2130-2250 cm−1). A short time scale (< 3 months) oxidation of the crystalline grain boundaries is observed, while at longer time scales, the oxidation of the amorphous tissue and the formation of O-H groups on the grain boundary surfaces play a role. The implications of this study on the quality of microcrystalline silicon exhibiting no post-deposition oxidation are discussed: it is not sufficient to merely passivate the surface of the crystalline grains and fill the gap between the grains with amorphous silicon. Instead, the quality of the amorphous silicon tissue should also be taken into account, since this oxidation can affect the passivating properties of the amorphous tissue on the surface of the crystalline silicon grains.  相似文献   

5.
Effects of deposition conditions on the structure of microcrystalline silicon carbide (μc-SiC) films prepared by hot-wire chemical vapor deposition (hot-wire CVD) method have been investigated. It is found from X-ray diffraction patterns of the film that a diffraction peak from crystallites from hexagonal polytypes of SiC is observed in addition to those of 3 C-SiC crystallites. This result is obtained in the film under a narrow deposition conditions of SiH3CH3 gas pressure of 8 Pa, the H2 gas pressure of 80–300 Pa and the total gas pressure of 40–300 Pa under fixed substrate and filament temperatures employed in this study. Furthermore, the grain size of hexagonal crystallites (about 20 nm) on c-Si substrates becomes larger than that of 3 C-SiC crystallites (about 10 nm) for the films deposited under the total gas pressure of 36–88 Pa. The fact that microcrystalline hexagonal SiC can be deposited under limited deposition conditions could be interpreted in the context of a result for c-SiC polytypes prepared by thermal CVD method.  相似文献   

6.
7.
The possibility of characterizing a number of practically important parameters of sapphire substrates by X-ray methods is substantiated. These parameters include wafer bending, traces of an incompletely removed damaged layer that formed as a result of mechanical treatment (scratches and marks), surface roughness, damaged layer thickness, and the specific features of the substrate real structure. The features of the real structure of single-crystal sapphire substrates were investigated by nondestructive methods of double-crystal X-ray diffraction and plane-wave X-ray topography. The surface relief of the substrates was investigated by atomic force microscopy and X-ray scattering. The use of supplementing analytical methods yields the most complete information about the structural inhomogeneities and state of crystal surface, which is extremely important for optimizing the technology of substrate preparation for epitaxy.  相似文献   

8.
We have used plasma enhanced chemical vapor deposition (PECVD) to deposit silicon thin films (~0.2–1 μm) with different crystallinity fractions on Nanosensors PtIr5 coated atomic force microscopy (AFM) cantilevers (450 × 50 × 2 μm3). Microscopic measurements of Raman scattering were used to map both internal stress and extrinsic stress induced in the films by bending the cantilevers using a nanomanipulator (Kleindiek Nanotechnik MM3A). Thanks to the excellent elasticity of the cantilevers, the films could be bent to curvature radii down to 300 μm. We observed the stress induced shift of the TO–LO phonon Raman band of more than 3 cm?1 for fully microcrystalline film corresponding to the stress ~0.8 GPa. The shift of the similar film with amorphous structure was ~2.5 cm?1.  相似文献   

9.
Raman spectra of the mixed phase silicon films were studied for a sample with transition from amorphous to fully microcrystalline structure using four excitation wavelengths (325, 514.5, 632.8 and 785 nm). Factor analysis showed the presence of two and only two spectrally independent components in the spectra within the range from 250 to 750 cm?1 for all four excitation wavelengths. The 785 nm excitation was found optimal for crystallinity evaluation and by comparison with surface crystallinity obtained by atomic force microscopy, we have estimated the ratio of integrated Raman cross-sections of microcrystalline and amorphous silicon at this wavelength as y = 0.88 ± 0.05.  相似文献   

10.
Microstructures of microcrystalline silicon (μc-Si) deposited at a high-growth-rate have been investigated in order to apply to the photovoltaic i-layer. μc-Si films were prepared by very-high-frequency (100 MHz) plasma-enhanced chemical vapor deposition at 180 °C. High growth rates of 3.3–8.3 nm/s have been achieved utilizing high deposition pressures up to 24 Torr and large input powers. Applying μc-Si to n–i–p junction solar cells, as the optimum result in this experimental series, a conversion efficiency of 6.30% (JSC: 22.1 mA/cm2, VOC: 0.470 V, and FF: 60.7%) has been achieved employing the i-layer deposited at 8.1 nm/s. Raman scattering and X-ray diffraction measurements revealed the crystalline volume fraction of around 50% with the (2 2 0) crystallographic preferential orientation, respectively. The cross-sectional transmission electron microscope image shows densely columnar structure grown directly on the underlying n-layer. These structural features are basically in good agreement those of low-growth-rate μc-Si used for a high efficiency solar cell as previously reported, implying advantages of the use of high pressures with regard to providing the photovoltaic i-layers. Finally, the implication is discussed from the photovoltaic performance as a function of the crystalline volume fraction of i-layer, and current problems in improving the photovoltaic performance are extracted.  相似文献   

11.
Pd thin films, grown on Si-rich 6H-SiC(0 0 0 1) substrates, were studied by atomic force microscopy, electron diffraction and high-resolution transmission electron microscopy. It is concluded that the growth is successful only when all the growth process takes place at room temperature. Under these conditions a very good epitaxial growth of Pd is achieved, despite the large misfit (about 8.6%) between Pd and the substrate and the existence of a semi-amorphous layer between the thin film and the substrate. A large number of twins appear in these films.  相似文献   

12.
A modified crystallization process using current‐induced joule heating under vacuum is presented. A thin layer of high temperature resistant tungsten was sputtered on the amorphous silicon as the conducting and annealing medium. The thin film thickness was measured by α‐stepper. The high current density provided effective means in crystallizing the amorphous silicon layer. The crystalline morphology was studied by scanning electron microscopy (SEM) after Secco‐etch, transmission electron microscopy (TEM), and x‐ray diffraction (XRD), under different annealing conditions. The grain size was controlled in the range of 0.1‐0.5 μm and could be increased with annealing time. No tungsten silicide was found. Some defects were formed due to electron‐migration effect near the electrodes. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
InAs co‐doped ZnO films were grown on sapphire substrates by pulsed laser deposition. The grown films have been characterized using X‐ray diffraction (XRD), Hall effect measurements, Atomic force microscope (AFM) and Field emission scanning electron microscope (FESEM) in order to investigate the structural, electrical, morphological and elemental properties of the films respectively. XRD analysis showed that all the films were highly orientated along the c‐axis. It was observed from Hall effect measurements that InAs co‐doped ZnO films were of n‐type conductivity. In addition, the presence of In and As has been confirmed by Energy dispersive X‐ray analysis. AFM images revealed that the surface roughness of the films was decreased upon the co‐doping. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
High-quality ZnO thin films have been grown on a Si(1 0 0) substrate by plasma-enhanced chemical vapor deposition (PECVD) using a zinc organic source (Zn(C2H5)2) and carbon dioxide (CO2) gas mixtures at a temperature of 180°C. A strong free exciton emission with a weak defect-band emission in the visible region is observed. The characteristics of photoluminescence (PL) of ZnO, as well as the exciton absorption peak in the absorption spectra, are closely related to the gas flow rate ratio of Zn(C2H5)2 to CO2. Full-widths at half-maximum of the free exciton emission as narrow as 93.4 meV have been achieved. Based on the temperature dependence of the PL spectra from 83 to 383 K, the exciton binding energy and the transition energy of free excitons at 0 K were estimated to be 59.4 meV and 3.36 eV, respectively.  相似文献   

15.
《Journal of Non》2006,352(9-20):993-997
A simple and effective method for selective CW laser crystallization of a-Si (CLC) without pre-patterning of a-Si has been reported. By using a metallic shadow mask instead of a photolithographic process, we can reduce the process steps and time compared with a conventional CLC process. It shows very high performance – mobility of 173 cm2/s, Ioff of ∼10−13 A @ Vd = −5 V, Ion/Ioff of >108 – as a p-channel poly-Si TFT even without any pre-/post-treatment to improve TFT characteristics such as plasma hydrogenation.  相似文献   

16.

The structures of nanocrystalline fibrous powders of refractory oxides have been investigated by different methods: determination of coherent-scattering regions, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic-force microscopy (AFM). The sizes of nanograins of different crystalline phases of refractory metal oxides have been determined during the formation of these nanograins and the dynamics of their growth during heat treatment in the temperature range 600–1600°C has been studied. The data on the structure of nanocrystalline refractory oxide powders, obtained by different methods, are in good agreement. According to the data on coherent-scattering regions, the sizes of the ZrO2 (Y2O3) and Al2O3 grains formed are in the range 4–6 nm, and the particle sizes determined according to the TEM and AFM data are in the ranges 5–7 and 2–10 nm, respectively. SEM analysis made it possible to investigate the dynamics of nanoparticle growth at temperatures above 1000°C and establish the limiting temperatures of their consolidation in fibers.

  相似文献   

17.
《Journal of Crystal Growth》2003,247(3-4):497-504
Structural, morphological, optical and electrical properties of ZnO thin films prepared by chemical spray pyrolysis from zinc acetate (Zn(CH3COO)2 2H2O) aqueous solutions, on polished Si(1 0 0), and fused silica substrates for optical characterization, have been studied in terms of deposition time and substrate temperature. The growth of the films present three regimes depending on the substrate temperature, with increasing, constant and decreasing growth rates at lower, middle, and higher-temperature ranges, respectively. Growth rate higher than 15 nm min−1 can be achieved at Ts=543 K. ZnO film morphological and electrical properties have been related to these growth regimes. The films have been characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy.  相似文献   

18.
A method for studying the correlations between substrate and film-coating profiles by atomic force microscopy, which makes it possible to calculate the correlation factor (a function of spatial frequency), has been developed. The spatial-frequency range in which the correlation factor can be reliably calculated is established. The method proposed is used to calculate the dependence of the correlation factor on spatial frequency for multilayer interference mirror elements.  相似文献   

19.
20.
《Journal of Non》2007,353(44-46):4048-4054
The nanostructural, chemical, and optical features of AlxSi0.45−xO0.55 (0  x 0.05) thin films were investigated in terms of Al concentration and post-deposition annealing conditions; the films were prepared by co-sputtering a Si main target and Al-chips, and the annealing was carried out at temperatures of 400–1100 °C. The a-Si0.45O0.55 films prepared without Al-chips and annealed at 800 °C contain ∼3.5 nm-sized Si nanocrystallites. The photoluminescence (PL) intensity as well as the volume fraction of Si nanocrystallites increased with increasing the concentration of Al to a certain level. In particular, the intensity of the PL spectra of the Al0.025Si0.425O0.550 films which were annealed at 800 °C increased significantly at wavelengths of ∼580 nm. It is highly likely that the observed increase in the PL intensity is caused by the raise in the total volume of the ∼3.5 nm-sized nanocrystallites in the films. The addition of Al as well as the post-deposition annealing allow adjustment and control of the nanostructural and light-emission features of the a-SiOx films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号