首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interaction mechanism between benzocaine (BZC) and lysozyme (Lys) has been investigated by fluorescence, synchronous fluorescence, ultraviolet–vis (UV) absorption spectra, and three-dimensional fluorescence (3-D) in various pH medium. The observations of fluorescence spectra were mainly rationalized in terms of a static quenching process at lower concentration of BZC (CBZC/CLys < 9) and a combined quenching process at higher concentration of BZC (CBZC/CLys > 9) at pH 7.4 and 8.4. However, the fluorescence quenching was mainly arisen from static quenching by complex formation in all studied drug concentrations at pH 3.5. The structural characteristics of BZC and Lys were probed, and their binding affinities were determined under different pH conditions (pH 3.5, 7.4, and 8.4). The results indicated that the binding abilities of BZC to Lys decreased at the pH below and above the simulative physiological condition (pH 7.4) due to the alterations of the protein secondary and tertiary structures or the structural change of BZC. The effect of BZC on the conformation of Lys was analyzed using UV, synchronous fluorescence and three-dimensional fluorescence under different pH conditions. These results indicate that the binding of BZC to Lys causes apparent change in the secondary and tertiary structures of Lys. The effect of Zn2+ on the binding constant of BZC with Lys under various pH conditions (pH 3.5, 7.4, and 8.4) was also studied.  相似文献   

2.
The interaction of Momordica charantia (bitter gourd) seed lectin (MCL) with several nucleic acid bases has been investigated by monitoring changes induced in the protein fluorescence by ligand binding. Values of the binding constant, Ka were obtained as 1.1 × 104, 1.56 × 104 and 2.2 × 103 M?1 for adenine, cytosine and uracil, respectively. In addition, binding of 8-anilinonaphthalene 1-sulfonate (ANS) with MCL was investigated by fluorescence spectroscopy. Interaction with MCL at low pH results in a large enhancement of the fluorescence intensity of ANS with a concomitant blue shift in the emission λmax, whereas at neutral and basic pH changes in both fluorescence intensity and emission maximum were very small, clearly suggesting that the MCL–ANS interaction is stronger at lower pH values. When excited at 295 nm in the presence of ANS, the protein fluorescence decreased with a concomitant increase in the emission intensity of ANS, suggesting resonance energy transfer from the tryptophan residues of MCL to ANS. Gel filtration profiles of MCL at pH values 2.0 and 7.4 are similar indicating that the tetrameric nature of MCL is retained even at low pH. Addition of lactose or adenine to MCL–ANS mixture did not alter the change in ANS fluorescence suggesting that lactose, adenine and ANS bind to MCL at independent and non-interacting sites. These results are relevant to understanding the functional role of MCL in the parent tissue.  相似文献   

3.
This paper reports a new solvent, room-temperature ionic liquid (RTIL), for the preparation of dodecanethiol self-assembled monolayers (C12SH-SAMs) on polycrystalline gold. The quality of C12SH-SAMs was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). From CV experiments, we find that the differential capacitance Cd values of the C12SH-SAM prepared in RTIL, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF6) containing 10 μL neat C12SH for 24 h (C12SH-SAMs[BMIM]PF6,10 μL,24 h) are independent of the scan rate, the effective thickness deff value and the average cant angle φ value of this monolayer are 18 ± 1 Å and 27 ± 4°, respectively. The difference value of the current density at −0.2 and 0.5 V (Δip) is only 0.73 ± 0.18 μA cm−2. EIS experiments show that the phase angle value at 1 Hz Φ1 Hz, the charge transfer resistance Rct value and surface coverage θ value of this C12SH-SAM are 88.2 ± 0.7°, 3.44 ± 1.91  cm2 and 99.998 ± 0.001%, respectively. These results indicate that high-quality C12SH-SAMs can be formed in [BMIM]PF6. In addition, the rate of formations of high-quality C12SH-SAMs in RTIL can be substantially improved by ultrasound.  相似文献   

4.
The thermodynamic parameters, ΔBG, ΔBH, ΔBS, and ΔBCp, of the drugs flurbiprofen (FLP), nabumetone (NAB), and naproxen (NPX) binding to β-cyclodextrin (βCD) and to γ-cyclodextrin (γCD) in 0.10 M sodium phosphate buffer were determined from isothermal titration calorimetry (ITC) measurements over the temperature range from 293.15 K to 313.15 K. The heat capacity changes for the binding reactions ranged from −(362 ± 48) J · mol−1 · K−1 for FLP and −(238 ± 90) J · mol−1 · K−1 for NAB binding in the βCD cavity to 0 for FLP and −(25.1 ± 9.2) J · mol−1 · K−1 for NPX binding in the larger γCD cavity, implying that the structure of water is reorganized in the βCD binding reactions but not reorganized in the γCD binding reactions. Comparison of the fluorescence enhancements of FLP and NAB upon transferring from the aqueous buffer to isopropanol with the maximum fluorescence enhancements observed for their βCD binding reactions indicated that some localized water was retained in the FLP–βCD complex and almost none in the NAB–βCD complex. No fluorescence change occurs with drug binding in the larger γCD cavity, indicating the retention of the bulk water environment in the drug–γCD complex. Since the specific drug binding interactions are essentially the same for βCD and γCD, these differences in the retention of bulk water may account for the enthalpically driven nature of the βCD binding reactions and the entropically driven nature of the γCD binding reactions.  相似文献   

5.
This article reports a rapid method of preparing self-assembled monolayers of dodecanethiol (C12SH-SAMs) on polycrystalline gold by microwave irradiation (MWI, 650 W, duty cycle is 10%). The qualities of C12SH-SAMs were characterized by both cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results show that the C12SH-SAMs formed by MWI in 120 s (C12SH-SAMsMWI,120 s) have low ionic permeability (the differential capacitance Cd values are independent of the scan rate and phase angle at 1 Hz Φ1 Hz = 89 ± 0.9°), excellent electrochemical blocking ability towards the redox probe (the current iMWI,120 s obtained from CV is lowest when compared to other SAMs and charge transfer resistance Rct = (1.15 ± 0.19) × 106 Ω cm2), and high surface coverage (99.996 ± 0.001%).  相似文献   

6.
A new piperazinium dihydrogen orthophosphate, C4H12N2(H2PO4)2 was discovered and characterized by combining information from X-ray diffraction, 31P CP/MAS NMR and thermal analysis (TG/DTA). The compound C4H12N2(HPO4)·H2O, was also studied in order to compare these two similar materials. The hydrothermal stability is investigated for the system: 1.0 C4H10N2: n H3PO4: 55–60 H2O, 0.5 < n < 3. The reaction mixtures with pH in the range 1.6–8.4 were placed at a fixed temperature in the range 20–180 °C for ca. 5 days. C4H12N2(H2PO4)2 was obtained when n > ca. 2. A crystal of piperazinium dihydrogen phosphate, C4H12N2(H2PO4)2 was structurally investigated using X-ray diffraction: triclinic, space group P1¯, a = 7.023(2), b = 7.750(3), c = 12.203(4) Å, α = 84.668(7), β = 81.532(7) and γ = 63.174(6)°, V = 586.0(4) Å3 and Z = 2. The reactivity of C4H12N2(H2PO4)2 was investigated by systematic solvothermal syntheses.  相似文献   

7.
The aim of this study was to examine the influence of photodynamic effect on biological activity of PBR–PP complexes. These measurements were performed in pH dependent environment. Constant concentration of solubilized receptor was titrated with increasing concentration of porphyrins (PPIX, Hp, PP(Arg)2, Hp(Arg)2, PP(Gly)2, PP(Ala)2, PP(Ser)2, PP(Phe)2) and binding constants were calculated. PBP–PP mixtures were illuminated with 3 J, 5 J or 10 J of blue light and changes in protein fluorescence was recorded. Experimental data were fitted to weak and strong binding models. As a result for all derivatives weak binding model was the best fitted. The strongest binding showed PPIX in pH 7.4 and with pH drop binding constants showed greater values for all examined derivatives. Out of amino acid derivatives the strongest binding was noticed for PP(Gly)2 and PP(Phe)2 and for the last one pH influence was not observed.  相似文献   

8.
(Liquid + liquid) equilibrium data for ternary and quaternary systems containing n-hexane (C6H14), toluene (C7H8), m-xylene (C8H10), propanol (C3H8O), sulfolane (C4H8SO2), and water (H2O) were measured at T = 303.15 K. Phase diagrams of {w1C4H8SO2 + w2C7H8 + (1  w1  w2)C6H14}, {w1C4H8SO2 + w2C8H10 + (1  w1  w2)C6H14}, {w1C4H8SO2 + w2C3H8O + w3C7H8 + (1  w1  w2  w3)C6H14} and also systems containing water: {w1C4H8SO2 + w2H2O + w3C7H8 + (1  w1  w2  w3)C6H14} and {w1C4H8SO2 + w2H2O + w3C8H10 + (1  w1  w2  w3)C6H14} (w = mass fraction) were obtained at T = 303.15 K. The (liquid + liquid) equilibrium data of the systems were used to obtain interaction parameters in non-random two-liquid (NRTL) and universal quasi-chemical theory (UNIQUAC) activity coefficient models. These parameters can be used to predict equilibrium data of ternary and quaternary systems. The root mean square deviations (RMSDs) using these models were calculated and reported. The partition coefficients and the selectivity factors of solvents for extraction of toluene or m-xylene from n-hexane at T = 303.15 K are calculated and presented. The experimental selectivity factors of sulfolane for the system {w1C4H8SO2 + w2C7H8 + (1  w1  w2)C6H14} at T = 298.15 K and T = 323.15 K were taken from the literature and the influence of temperature on the extraction of toluene was also investigated. The phase diagrams for the ternary and quaternary systems including both the experimental and correlated tie lines are presented. The tie-line data of the studied systems were also correlated using the Hand equation and the correlation parameters are calculated and reported.  相似文献   

9.
Recent years have witnessed burgeoning interest in plant flavonoids as novel therapeutic drugs targeting cellular membranes and proteins. Motivated by this scenario, we explored the binding of robinetin (3,7,3′,4′,5′-pentahydroxyflavone, a bioflavonoid with remarkable ‘two color’ intrinsic fluorescence properties), with egg yolk phosphatidylcholine (EYPC) liposomes and normal human hemoglobin (HbA), using steady state and time resolved fluorescence spectroscopy. Distinctive fluorescence signatures obtained for robinetin indicate its partitioning (Kp = 8.65 × 104) into the hydrophobic core of the membrane lipid bilayer. HbA–robinetin interaction was examined using both robinetin fluorescence and flavonoid-induced quenching of the protein tryptophan fluorescence. Specific interaction with HbA was confirmed from three lines of evidence: (a) bimolecular quenching constant Kq ? diffusion controlled limit; (b) closely matched values of Stern–Volmer quenching constant and binding constant; (c) τ0/τ = 1 (where τ0 and τ are the unquenched and quenched tryptophan fluorescence lifetimes, respectively). Absorption spectrophotometric assays reveal that robinetin inhibits EYPC membrane lipid peroxidation and HbA glycosylation with high efficiency.  相似文献   

10.
The thermodynamic aspects of sublimation processes of three sulfonamides with the general structures C6H5–SO2NH–C6H4–R (R = 4-NO2) and 4-NH2–C6H4–SO2NH–C6H4–R (R = 4-NO2; 4-CN) were studied by investigating the temperature dependence of vapor pressure using the transpiration method. These data together with those obtained earlier for C6H5–SO2NH–C6H4–R (R = 4-Cl) and 4-NH2–C6H4–SO2NH–C6H4–R (R = 4-Cl; 4-OMe; 4-C2H5) were analyzed and compared. A correlation was derived between sublimation Gibbs free energies and the sum of H-bond acceptor factors of the molecules. Solubility processes of the compounds in water, phosphate buffer with pH 7.4 and n-octanol (as phases modeling various drug delivery pathways) were investigated and corresponding thermodynamic functions were calculated as well. Thermodynamic characteristics of the sulfonamides solvation were evaluated. Also in this case a correlation between solubility/solvation Gibbs free energy values and the sum of H-bond acceptor factors was observed. For the sulfonamides with various substituents at para-position the processes of transfer from one solvent (water or buffer) to n-octanol were studied by a diagram method combined with analysis of enthalpic and entropic terms. Distinguishing between enthalpy and entropy, as is possible through the present approach, leads to the insight that the contribution of these terms is different for different molecules (entropy- or enthalpy-determined). Thus, in contrast to the interpretation of only the Gibbs free energy of transfer (extensively used for pharmaceuticals in the form of the partition coefficient, log P), the analysis of thermodynamic functions of the transfer process provides additional mechanistic information. This may be important for further evaluation of the physiological distribution of drug molecules and may provide a better understanding of biopharmaceutical properties of drugs.  相似文献   

11.
In this work the stability parameters of bovine β-lactoglobulin, variant A (BLG-A), with regard to their transition curves induced by dodecyltrimethylammonium bromide (C12TAB), tetradecyltrimethylammonium bromide (C14TAB) and hexadecyltrimethylammonium bromide (C16TAB) as cationic surfactants, were determined at 298 K. For each transition curve, the conventional method of analysis which assumes a linear concentration dependence of the pre- and post-transition base lines, gave the most realistic values for ΔGD(H2O). The results represent the increase in the denaturating power of surfactants with an increase in hydrocarbon chain length. The value of about 22.27 kJ · mol?1 was obtained for ΔGD(H2O) from transition curves. Subsequently, the retinol binding property of BLG as its functional indicator was investigated in the presence of these surfactants using the spectrofluorimeter titration method. The results represent the substantial enhancement of retinol binding affinity of BLG in the presence of these surfactants.  相似文献   

12.
Binary mixture density data are reported for propane (C3) with n-decane (C10) and with n-eicosane (C20) at T = (320 to 525) K and pressures to 265 MPa. The (C3 + C10) mixture density data are in good agreement with available literature data to 70 MPa, which is the maximum reported literature pressure. There are no available binary mixture density data to compare to the (C3 + C20) mixture density data reported in the present study. The mixture density data are correlated with the Tait equation to facilitate interpolation of the data at different experimental conditions. Equations of state that are suitable for reservoir simulations are used to model the reported data. These models include the Peng–Robinson equation of state (PREoS), a volume-translated PREoS fit to high temperature, high pressure (HTHP) pure component density data, the PC-SAFT EoS, and modifications of the PC-SAFT EoS developed for better representation of HTHP data. The models give superior density predictions for (C3 + C10) mixtures compared to (C3 + C20) mixtures.  相似文献   

13.
An acoustic Greenspan viscometer was used to measure the kinematic viscosity and speed of sound in the gases: CO, CO2, SiF4, SF6, C4F8, and NH3. The measurements cover the temperature range 220 K to 375 K, and pressures up to 3.4 MPa or 80% of the saturation pressure.The viscometer was calibrated at 298.16 K using five reference gases, Ar, He, N2, CH4, and C3H8, for which the viscosity and the speed of sound are known. With this calibration, we estimated the relative standard uncertainty of the kinematic viscosity ur(η/ρ) = 0.006 and the uncertainty of speed of sound ur(c) = 0.0001, except for very low pressures where the signal-to-noise ratio deteriorates and quality factor for the Helmholtz mode is ?20.  相似文献   

14.
Interaction of 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) and isopropanol in the presence of equimolar quantities of guanidine thiocyanate (GndSCN) with bovine α-lactalbumin (α-LA) has been investigated by using a combination of isothermal titration calorimetry, circular dichroism, fluorescence, and ultra-violet spectroscopies at in 20 · 10?3 mol · dm?3 phosphate buffer pH 7.0. All the thermal unfolding transitions, in the presence of both the (alcohol + salt) mixtures were found to be reversible as judged by the same values of absorbance observed at different temperatures during cooling after the completion of thermal unfolding. In the presence of the 0.25 mol · dm?3 (HFIP + GndSCN) equimolar mixture and 0.85 mol · dm?3 (isopropanol + GndSCN) equimolar mixture, α-lactalbumin was observed to be in the partially folded state with significant loss of native tertiary structure. Intrinsic fluorescence results, acrylamide and potassium iodide quenching, 8-anilino-1-naphthalenesulfonic acid (ANS) binding, and energy transfer results also corroborate the presence of partially folded states of α-lactalbumin. Apart from the generation of the partially folded states, it was also observed that destabilizing action of GndSCN is reduced in the presence of isopropanol compared to that in HFIP. Isothermal titration calorimetry has been used to characterize the energetics of ANS binding to the partially folded states of the protein. ITC results indicate that ANS binds to these partially folded states at pH 7.0 due to the presence of two sequentially binding sites on the protein under the solvent conditions employed. For example, ANS binds to the 0.25 mol · dm?3 (HFIP + GndSCN) induced partially folded state with affinity constants K1 = (858 ± 220), K2 = (1.12 ± 0.25) · 103; enthalpies of binding ΔH1 = (4.4 ± 1.0) kJ · mol?1, ΔH2 = (2.1 ± 0.2) kJ · mol?1; and entropies of binding ΔS1 = 70 J · K?1 · mol?1 and ΔS2 = 65 J · K?1 · mol?1, respectively at these two sequential binding sites. In light of the fluorescence results, possible binding sites where ANS can bind to the protein have also been suggested.  相似文献   

15.
《Chemical physics》2005,308(1-2):79-91
The absorption and emission behaviour of flavin mononucleotide (FMN) in the wild-type light, oxygen and voltage sensitive domain LOV2 of the photoreceptor phot from the green alga Chlamydomonas reinhardtii is studied. Actually a LOV2-His protein (LOV2 domain bound at N-terminal to 15 His aminoacids via a Gly aminoacid) expressed in an Escherichia coli strain is investigated. For fresh samples stored in the dark an initial fluorescence quantum yield of ϕF = 0.12 ± 0.01 and an effective fluorescence lifetime of τF = 2.4 ± 0.1 ns are determined. Blue-light photo-excitation generates an intermediate photoproduct (flavin-C(4a)-cysteinyl adduct with absorption peak at 390 nm) resulting in an intensity-dependent fluorescence quenching. In the aqueous solutions at pH 8 approximately 3.8% of the FMN molecules are not bound to the protein binding pocket, whereas 96.2% are non-covalently bound. Even at high-intensity light excitation at 428 nm a fraction of about 7% of the non-covalently bound FMN remains non-converted to an FMN-Cys adduct because of photo-induced back-relaxation of the adduct to non-covalently bound FMN. Two holo-LOV2-His conformations with different adduct recovery time constants are revealed by spectrally and temporally resolved fluorescence and absorption measurements: A fraction of about 48% forms FMN-Cys adducts with a fast recovery time constant of τAd,f = 19 ± 2 s in the dark, and the rest forms adducts with a slow recovery time constant of τF,s = 5.5 ± 1 min. Prolonged blue light irradiation of the flavin-C(4a)-cysteinyl adducts reduces their ability to recover back in the dark to non-covalently bound FMN (photo-induced permanent adduct formation). Numerical simulations of the intensity-dependent absorption depletion reveals a quantum yield of intermediate photo-adduct formation of ϕAd = 0.9 ± 0.1. Simulation of the adduct absorption dynamics gives a quantum yield of photo-induced adduct back-relaxation of ϕAd,b = 0.15 ± 0.01 and a quantum yield of photo-induced permanent adduct formation of ϕAd,p = (2.6 ± 0.5) × 10−4.  相似文献   

16.
Low-temperature heat capacities of the 9-fluorenemethanol (C14H12O) have been precisely measured with a small sample automatic adiabatic calorimeter over the temperature range between T=78 K and T=390 K. The solid–liquid phase transition of the compound has been observed to be Tfus=(376.567±0.012) K from the heat-capacity measurements. The molar enthalpy and entropy of the melting of the substance were determined to be ΔfusHm=(26.273±0.013) kJ · mol−1 and ΔfusSm=(69.770±0.035) J · K−1 · mol−1. The experimental values of molar heat capacities in solid and liquid regions have been fitted to two polynomial equations by the least squares method. The constant-volume energy and standard molar enthalpy of combustion of the compound have been determined, ΔcU(C14H12O, s)=−(7125.56 ± 4.62) kJ · mol−1 and ΔcHm(C14H12O, s)=−(7131.76 ± 4.62) kJ · mol−1, by means of a homemade precision oxygen-bomb combustion calorimeter at T=(298.15±0.001) K. The standard molar enthalpy of formation of the compound has been derived, ΔfHm(C14H12O,s)=−(92.36 ± 0.97) kJ · mol−1, from the standard molar enthalpy of combustion of the compound in combination with other auxiliary thermodynamic quantities through a Hess thermochemical cycle.  相似文献   

17.
《Polyhedron》2005,24(3):397-406
Four 4,4′-bipyridine α,ω-dicarboxylate coordination polymers Cu(bpy)(C5H6O4) (1), Zn(bpy)(C5H6O4) (2), Zn(bpy)(C6H8O4) (3) and Mn(bpy)(C8H12O4) · H2O (4) have been synthesized and structurally characterized by single crystal X-ray diffraction methods (bpy = 4,4-bipyridine, (C5H6O4)2− = glutarate anion, (C6H8O4)2− = adipate anion, (C8H12O4)2− = suberate anion). Their crystal structures are featured by dimeric metal units, which are co-bridged by 4,4′-bipyridine ligands and dicarboxylate anions such as glutarate, adipate and suberate anions to generate 2D layers with a (4,4) topology in 1, 2 and 4 as well as to form 3D frameworks in 3. Two 3D frameworks in 3 interpenetrate with each other to form a topology identical to the well-known Nb6F15 cluster compound. Over 5–300 K, the paramagnetic behavior of 4 follows the Curie–Weiss law χm(T  Θ) = 4.265(5) cm3 mol−1 with the Weiss constant Θ = −6.3(2) K. Furthermore, the thermal behavior of 3 and 4 is also discussed.  相似文献   

18.
A series of new unsymmetrical perylene diimides have been synthesized to investigate their binding selectivities to G-quadruplex DNA structure, a unique four-stranded DNA motif, which is significant to the regulation of telomerase activity. The structures of the perylene diimides have been characterized by IR spectrophotometer, 1H NMR, 13C NMR, MS, TGA and time-resolved instruments. Spectrochemical behaviors have been investigated by visible absorption and fluorescence emission spectra. The spectral characterization of the compounds has been investigated in five common organic solvents of different polarity and in water (in 170 mM phosphate buffer at pH 6). Marked red shifts of absorbance and fluorescence emission bands of the compounds in aqueous solution are compared with the other organic solutions. The fluorescence quantum yields are determined low in more polar solvents and also calculated to be about less than about 0.05 in aqueous solution because of the aggregation effects. Photodegradation rate constants (kp) of the synthesized compounds have been compared under xenon lamp irradiation in acetonitrile solution.Binding abilities of the synthesized perylene diimides to different form of DNA strands have been investigated by visible absorption and fluorescence spectroscopy in the phosphate buffer solutions. Also, pH-dependent aggregation and G-quadruplex DNA binding selectivity of these ligands have been compared. Among these ligands, N-(2,6-diisopropylphenyl)-N′-(4-pyridyl)-perylene-3,4,9,10-tetracarboxylic diimide (PYPER) has been found to be the most selective interactive ligand for G-quadruplex formed in the G4′-DNA structure. PYPER has shown a significant selectivity to G4′-DNA which is comprised of d(TTAGGG) repeats, known as human telomeres, in the phosphate buffer at pH 6. The absorption maximum of the PYPER/G4′-DNA complex has given bathochromic shift of 7 nm with respect to the absorption maximum of DNA-free solution of PYPER in phosphate buffer at pH 6. Fluorescence quenching experiments between PYPER and G4′-DNA show that PYPER demonstrates about a 9.3-fold selectivity for binding to G4′-DNA versus ds-DNA base pairs with the bimolecular rate constant of 0.95 × 1012 M−1 s−1.  相似文献   

19.
Amphiphilic triblock copolymer, poly(p-dioxanone-co-caprolactone)-block-poly(ethylene oxide)-block-poly(p-dioxanone-co-caprolactone) (PPDO-co-PCL-b-PEO-b-PPDO-co-PCL) was synthesized by ring opening polymerization (ROP) of p-dioxanone and ɛ-caprolactone initiated through the hydroxyl end of poly(ethylene glycol) (PEG) in the presence of stannous 2-ethyl hexanoate [Sn(oct)2] as a catalyst. Polymerization and structural features of the polymers were analyzed by different physicochemical techniques (GPC, 1H NMR, 13C NMR, FT-IR, DSC and TGA). The splitting of 1H NMR resonance at δ 2.3 and δ 4.1 ppm reveals the random copolymerization. Polymeric nanoparticles were prepared in phosphate buffer (pH 7.4) by co-solvent evaporation technique at room temperature (25 °C). Existence of hydrophobic domains as cores of the micelles were characterized by 1H NMR spectroscopy and further confirmed with fluorescence technique using pyrene as a probe. Critical micelle concentration (CMC) of the polymer in phosphate buffer (pH. 7.4) was decreased from 2.3 × 10−3 to 7.6 × 10−4 g/L with the fraction of PCL. Polymeric nanoparticles observed by atomic force microscopy (AFM) were uniform and spherical, with smooth textured of around 50–30 nm diameter. Dynamic light scattering (DLS) and electrophoretic light scattering (ELS) measurements showed a monodisperse size distribution of around 113–90 nm hydrodynamic diameters and negative zeta (ζ) potential (−4 to −14 mV), respectively. The investigations for the polymeric nanoparticles in aqueous medium showed that the composition of the hydrophobic segment of amphiphilic block copolymer makes a significant influence on its physicochemical characteristics.  相似文献   

20.
The FTIR spectrum of symmetrical derivative of the tetraoxa[8]circulene, named para-dinaphthyleno-2,3,10,11-tetraundecyldiphenylenotetrafuran (p-2B2N4R, R = n-C11H23) has been recorded and interpreted using density functional theory (DFT) calculations for the model compounds p-2B2N4R (R = H, C2H5). The unsubstituted tetraoxa[8]circulene, namely para-dinaphthylenodiphenylenotetrafuran (p-2B2N) and para-dinaphthyleno-2,3,10,11-tetraethyldiphenylenotetrafuran (p-2B2N4R, R = C2H5) belong to the D2h and D2 symmetry point groups, respectively. The equilibrium molecular geometry, harmonic vibrational frequencies and infrared intensities have been calculated utilizing the DFT/B3LYP method with the 6–31G(d) basis set using the symmetry constraints. Comparison of the calculated vibrational spectra with the experimental data provides a reliable assignment of the observed bands in the FTIR spectra. The results of quantum-chemical calculations provide a complete interpretation of vibrational modes based on a good agreement with all details of the experimental spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号