首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
本文合成了一种新的具有全氟丁基磺酰亚胺基侧链的聚磷腈高分子。并用1H NMR、 19F NMR、 IR光谱、凝胶渗透色谱以及热重分析等方法, 对其结构和性质进行了表征。  相似文献   

2.
缓冲体系中高热和水热稳定性的MCM-48介孔分子筛的合成   总被引:3,自引:0,他引:3  
孔令东  刘苏  颜学武  贺鹤勇  李全芝 《化学学报》2005,63(13):1241-1244
利用混合阳离子-非离子表面活性剂为模板剂在缓冲体系中成功地合成出具有高热和水热稳定性的MCM-48介孔材料. 通过XRD, N2吸附-脱附, 29Si MAS NMR和 31P MAS NMR等手段对样品进行了表征. 结果表明, 合成的MCM-48材料具有高的比表面积和高度有序的孔道系统. 样品在空气中于900 ℃下焙烧15 h和在600 ℃ 100%水蒸气下处理8~10 h, 仍能保持良好的立方孔道结构, 显示很高的热稳定性和极好的水热稳定性.  相似文献   

3.
用溶胶凝胶法合成了Y2-xSiO5∶Eux纳米发光材料,使用XRD、FTIR和TEM对其结构进行了表征。讨论了相结构、煅烧温度和Eu3+掺杂浓度对材料发光性能的影响及规律。结果显示煅烧温度在900 ℃以下,材料主要呈非晶相结构,900 ℃以上材料主要呈晶态结构;颗粒随煅烧温度升高而增大,在非晶态时颗粒大小在15~45 nm,在晶态时颗粒大小为60~80 nm。激发光谱和荧光发射光谱受材料晶相结构以及Eu3+掺杂浓度的影响,在晶态结构中Y2-xSiO5∶Eux纳米材料呈现更精细的激发和发射光谱。在激发光谱中,电荷转移态吸收(CST)随煅烧温度升高呈现兰移现象,晶态时CST同非晶态相比明显红移;在发射光谱中,非晶态时 5D07F2跃迁呈现强的发光峰,随材料制备温度升高而增强,在晶态时该发光峰强度减弱,在长波波段呈现两个新的发光尖峰,并随煅烧温度升高而增强; 5D07F1发射峰从非晶态转变为晶态后,光谱裂分为三重尖峰;而 5D07F0跃迁发光光谱受结构和颗粒大小影响较小。同时在60~80 nm的Y2-xSiO5∶Eux晶体中,发现材料 5D07F25D07F1跃迁发光强度,均受Eu3+掺杂浓度的影响,当掺杂浓度x=0.4时,材料发光强度最大。  相似文献   

4.
四配位硅单体及其共聚物的制备和结构表征   总被引:4,自引:0,他引:4  
研究了直接从无定形二氧化硅出发, 与乙二醇、氢氧化钾反应, 生成高反应活性的五配位硅钾化合物, 并以此为原料与含活泼氯的3-氯丙烯反应制备出含双键官能团的四配位硅单体. 讨论了合成单体的条件如温度、反应时间、反应物浓度、溶液pH值及溶剂等因素的影响. 然后以该四配位硅单体与甲基丙烯酸甲酯(MMA)在偶氮二异丁腈(AIBN)作引发剂下进行自由基聚合得到支链含硅共聚物. 并借助于红外光谱(IR)、核磁共振(13C和1H, 29Si)、能谱元素分析对合成的单体进行了结构表征; 用红外光谱(IR)、热失重谱(TG)、差示扫描量热谱(DSC)、凝胶渗透色谱法(GPC)等现代测试手段对支链含硅共聚物进行了结构表征及热性能分析. IR表明四配位硅单体在1646 cm-1处是C=C的伸缩振动吸收峰, 在共聚物中此峰消失; TG表明共聚物在249.6 ℃才开始失重, 552 ℃有机部分失重完毕; GPC分析表明共聚物的数均分子量为8.7万.  相似文献   

5.
4-(氮杂-15-冠-5)-1,8-萘酰亚胺荧光探针的合成及性能研究   总被引:2,自引:0,他引:2  
N-丁基-4-溴-1,8-萘酰亚胺与二乙醇胺反应, 合成了N-丁基-4-二(2-羟乙基)氨-1,8-萘酰亚胺, 进一步与对甲基苯磺酸二缩三乙二醇双酯反应合成了N-丁基-4-(氮杂-15-冠-5)-1,8-萘酰亚胺. 用NMR, IR, MS等表征了产物结构. 该化合物在二氯甲烷溶液中识别Li和Na, 识别后吸收光谱和荧光光谱蓝移.  相似文献   

6.
蔡汉成  尹端沚  张岚  汪勇先 《有机化学》2006,26(12):1709-1713
报道了2-氨基-6-氟-9-(4-羟基-3-羟甲基丁基)嘌呤(1)的合成, 通过对起始原料2-氨基-6-氯-9-(4-乙酰氧基-3-乙酰氧甲基丁基)嘌呤(2)水解脱去乙酰基, 得到2-氨基-6-氯-9-(4-羟基-3-羟甲基丁基)嘌呤(3). 化合物3与三甲胺乙醇溶液在混合溶剂[V(THF)∶V(DMF)=3∶1]中反应得到相应的氯化铵盐4, 然后与KF在DMF溶剂中反应, 得到化合物1. 产品经UV-vis, IR, 1H NMR, 19F NMR和MS表征. 考察了反应温度、氟化试剂等因素对氟化反应的影响, 为6位含氟的嘌呤核苷类化合物的合成提供了一种直接、简易的新方法.  相似文献   

7.
余明新  温伟江  郑建鸿 《有机化学》2006,26(9):1239-1242
N,N′-二苯基-1,4-苯二胺和N4,N4'-二苯基-4,4'-联苯二胺分别与芳基溴在Pd(OAc)2/P(t-Bu)3催化下于120 ℃邻二甲苯溶液中反应生成苯二胺和联苯二胺类叔芳胺有机电致发光材料, 这些化合物的熔点都在300 ℃以上. 产物的结构经1H NMR, 13C NMR, 13C (DEPT), MS (HREI和EI)表征. 用UV-Vis, PL, DSC测定了苯二胺和联苯二胺类叔芳胺化合物的发光性能.  相似文献   

8.
苯基磺酸官能化中孔硅基材料的制备及催化性能研究   总被引:7,自引:0,他引:7  
杨建明  寇联岗  吕剑 《化学学报》2005,63(5):396-400
通过溶胶-凝胶法制得了苯基聚硅氧烷, 进一步磺化制备了苯基磺酸官能化的中孔硅基催化材料, 并通过BET, SEM和固体核磁技术对其进行了表征. BET结果表明, 该催化剂比表面积为722 m2/g, 平均孔径为9.06 nm, 孔容0.59 mL/g. 13C CPMAS NMR和29Si CPMAS NMR表征显示磺酸基键合于苯环间位, 苯基以共价方式进入无机-有机杂化硅基材料的内部结构. 该固体酸的活性中心磺酸基在表面呈均匀分布, 在芳族羧酸和取代酚的直接酯化反应中表现出优异的催化性能.  相似文献   

9.
一锅煮法合成苯基苄基酮缩氨基硫脲   总被引:2,自引:0,他引:2  
以天然产物异黄酮与氨基硫脲为原料, 在碱性条件下乙醇为溶剂, 合成了10种苯基苄基酮缩氨基硫脲化合物. 此方法操作简便、条件温和、且产率较高, 是合成苯基苄基缩氨基硫脲的一种简便实用的方法. 采用IR, 1H NMR, 13C NMR和元素分析对这10种化合物结构进行了表征.  相似文献   

10.
N-芳基吡唑衍生物为原料, 离子液体为溶剂合成了一系列的席夫碱, 通过IR, 1H NMR, 元素分析对其结构进行了表征. 通过X射线衍射分析测定了化合物2a的晶体结构.  相似文献   

11.
Dumbbell‐shaped isobutyl‐substituted 1,2‐bis(4‐vinylphenyl)acetylene‐linked POSS (DA1), 9,10‐bis(4‐vinylphenyl)ethynyl)anthracene‐linked POSS (DA2), and 5,5″‐bis((4‐vinyl)phenyl)ethynyl)‐2,2′:5′2″‐terthiophene‐linked POSS (DA3), and corresponding model compounds were synthesized by cross metathesis and Sonogashira reaction, and their film formability, and thermal and optical properties were examined. The dumbbell structures of the obtained compounds were confirmed by 1H‐, 13C‐, and 29Si‐NMR and MALDI‐TOF‐MS analysis. The dumbbell‐shaped POSS compounds gave optically transparent films. All the model compounds, however, formed opaque films. All the films were emissive under UV irradiation. The dumbbell structures minimize longer wavelength shifts and improve emission efficiency of the luminescent π‐conjugated linker units in their solid states compared with the model compounds. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012.  相似文献   

12.
Two novel organic–inorganic hybrid polyfluorene derivatives, poly{(9,9′‐dioctyl‐2,7‐fluorene)‐co‐(9,9′‐di‐POSS‐2,7‐fluorene)‐co‐[2,5‐bis(octyloxy)‐1,4‐phenylene]} (PFDOPPOSS) and poly{(9,9′‐dioctyl‐2,7‐fluorene)‐co‐(9,9′‐di‐POSS‐2,7‐fluorene)‐co‐bithiophene} (PFT2POSS), were synthesized by the Pd‐catalyzed Suzuki reaction of polyhedral oligomeric silsesquioxane (POSS) appended fluorene, dioctyl phenylene, and bithiophene moieties. The synthesized polymers were characterized with 1H NMR spectroscopy and elemental analysis. Photoluminescence (PL) studies showed that the incorporation of the POSS pendant into the polyfluorene derivatives significantly enhanced the fluorescence quantum yields of the polymer films, likely via a reduction in the degree of interchain interaction as well as keto formation. Additionally, the blue‐light‐emitting polyfluorene derivative PFDOPPOSS showed high thermal color stability in PL. Moreover, single‐layer light‐emitting diode devices of an indium tin oxide/poly(3,4‐ethylene dioxythiophene):poly(styrene sulfonate)/polymer/Ca/Al configuration fabricated with PFDOPPOSS and PFT2POSS showed much improved brightness, maximum luminescence intensity, and quantum efficiency in comparison with devices fabricated with the corresponding pristine polymers PFDOP and PFT2. In particular, the maximum external quantum efficiency of PFT2POSS was 0.13%, which was twice that of PFT2 (0.06%), and the maximum current efficiency of PFT2POSS was 0.38 cd/A, which again was twice that of PFT2 (0.19 cd/A). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2943–2954, 2006  相似文献   

13.
Methylsilicone resin/polyhedral oligomeric silsesquioxane (POSS) composites with various proportions of POSS monomer were synthesized by the reaction of functionalized TriSilanolIsobutyl-POSS macromonomer with hydroxyl-terminated methylsilicone resin. The structures of the obtained hybrid polymers were characterized with Fourier-transformed infrared (FT-IR) and transmission electron microscopy (TEM). The FT-IR spectra suggested successful bonding of TriSilanolIsobutyl-POSS and methylsilicone resin. TEM analysis showed that POSS can dissolve in methylsilicone resin at the molecular level. The influences of TriSilanolIsobutyl-POSS on the thermal stability and degradation behavior of methylsilicone resin were studied by thermogravimetric analysis (TGA), solid-state 29Si NMR and X-ray photoelectron spectroscopy (XPS). All these techniques showed that TriSilanolIsobutyl-POSS incorporation results in increased decomposition temperatures and oxidation resistance, primarily by reducing the effect of silanol end groups on the thermolysis through condensation reaction of Si-OH groups and partial loss of isobutyl followed by the formation of an inorganic SiO2 layer to prevent methylsilicone from further degradation.  相似文献   

14.
We report the synthesis and characterization of novel elastomeric nanocomposites containing polyhedral oligomeric silsesquioxanes (POSS) as both the cross‐linker and filler within a polydimethylsiloxane (PDMS) polymer matrix. These polymer composites were prepared through the reaction of octasilane‐POSS (OS‐POSS) with vinyl‐terminated PDMS chains using hydrosilylation chemistry. In addition, larger super‐POSS cross‐linkers, consisting of two pendant hepta(isobutyl)POSS molecules attached to a central octasilane‐POSS core, were also used in the fabrication of the PDMS composites. The chemical incorporation of these POSS cross‐linkers into the PDMS network was verified by solid‐state 1H magic angle spinning NMR. Based on dynamic mechanical analysis, the PDMS nanocomposites prepared with the octafunctional OS‐POSS cross‐linker exhibited enhanced mechanical properties relative to polymer systems prepared with the tetrafunctional TDSS cross‐linker at equivalent loading levels. The observed improvements in mechanical properties can be attributed to the increased dimensionality of the POSS cross‐linker. The PDMS elastomers synthesized from the larger super‐POSS molecule showed improved mechanical properties relative to both the TDSS and OS‐POSS composites due to the increased volume‐fraction of POSS filler in the polymer matrix. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2589–2596, 2009  相似文献   

15.
The synthesis of new organic-inorganic materials were investigated. Poly(ε-caprolactone) and poly(l, l-lactide) covalently end-capped by a polyhedral oligomeric silsesquioxane (POSS) moiety, leading to new nanohybrid materials, were successfully prepared by coordination-insertion ring opening polymerization (ROP) of ε-caprolactone (ε-CL) and l,l-lactide (l,l-LA) respectively. The reaction was initiated from the primary amine available on aminopropylheptakis(isobutyl)POSS nanoparticles and catalyzed by tin(II) 2-ethylhexanoate (tin octoate, Sn(oct)2). The covalent grafting of the polyester chains onto the POSS “nanocages” was assessed by selective fractionation experiment, Fourier transform infrared spectroscopy (FTIR) and further confirmed by proton nuclear magnetic resonance (1H NMR). The polymerization proved to be well controlled as attested by the quite narrow polydispersity indices as determined by size exclusion chromatography (SEC). Furthermore, well-defined semi-crystalline poly(ε-caprolactone)-b-polylactide block copolymer carrying such POSS nanoparticle at one end was successfully synthesized attesting for the very efficient control over the polymerization reaction.  相似文献   

16.
Homosubstituted amido‐functionalized polyoctahedral oligomeric silsesquioxanes (POSS) have been synthesized by using acyl chlorides in high yields (ca. 95 %). The method proved to be superior over “conventional” syntheses applying carboxylic acids or acid anhydrides, which are much less efficient (ca. 60 % yield). A palette of aryl and alkyl groups has been used as side‐chains. The structures of the resulting amide‐POSS are supported by multinuclear 1H, 13C, 29Si NMR and FTIR spectroscopy and their full conversion into octasubstituted derivatives was confirmed using mass spectrometry. We also demonstrate that the functionalized silsesquioxanes with bulky organic side‐chains attached to cubic siloxane core form spherical‐like, well‐separated nanoparticles with a size of approximately 5 nm.  相似文献   

17.
A series of regioisomeric Janus‐type polyhedral oligomeric silsesquioxanes (POSS) with multiple, mixed surface functional groups has been successfully synthesized based on the cubic T8‐POSS framework in two consecutive thiol–ene reactions. The first thiol–ene addition of β‐mercaptoethanol leads to a statistical mixture of multi‐adducts where the regioisomers of bis‐adducts (ortho, meta, and para isomers) can be isolated at synthetically useful quantities by flash column chromatography. Then, the second thiol–ene reaction readily installs a variety of functional groups onto the remaining vinyl groups of each regioisomer, providing an easy access to precisely defined, hetero‐bifunctional Janus POSS nano‐building blocks. The configurations and structures of the products have been unambiguously proven by using 1H, 13C, and 29Si NMR spectroscopy as well as MALDI‐TOF mass spectrometry.  相似文献   

18.
In this report, we have synthesized organic/inorganic hybrid peptide–poly(?‐caprolactone) (PCL) conjugates via ring opening polymerization (ROP) of ?‐caprolactone (CL) in the presence of two sequence defined peptide initiators, namely POSS‐Leu‐Aib‐Leu‐NH2 (POSS: polyhedral oligomeric silsesquioxane; Leu: Leucine; Aib: α‐aminoisobutyric acid) and OMe‐Leu‐Aib‐Leu‐NH2. Covalent attachment of peptide segments with the PCLs were examined by 1H and 29Si NMR spectroscopy, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) and FTIR spectroscopy. Supramolecular inclusion complexations of synthesized peptide‐PCL conjugates with α‐cyclodextrin (α‐CyD) were studied to understand the effect of POSS/OMe‐peptide moieties at the PCL chain ends. Inclusion complexation of peptide‐PCL conjugates with α‐CyD produced linear polypseudorotaxane, confirmed by 1H NMR, FTIR, powder X‐ray diffraction (PXRD), polarized optical microscopy (POM) and differential scanning calorimetry (DSC). Extent of α‐CyD threading onto the hybrid peptide‐PCL conjugated polymers is less than that of α‐CyD threaded onto the linear PCL. Thus, PCL chains were not fully covered by the host α‐CyD molecules due to the bulky POSS/OMe‐peptide moieties connected with the one edge of the PCL chains. PXRD experiment reveals channel like structures by the synthesized inclusion complexes (ICs). Spherulitic morphologies of POSS/OMe‐peptide‐PCL conjugates were fully destroyed after inclusion complexation with α‐CyD and tiny nanoobjects were produced. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3643–3651.  相似文献   

19.
We report on investigations of reactions of tBu2Zn with 8‐hydroxyquinoline (q‐H) and the influence of water on the composition and structure of the final product. A new synthetic approach to photoluminescent zinc complexes with quinolinate ligands was developed that allowed the isolation of a series of structurally diverse and novel alkylzinc 8‐hydroxyquinolate complexes: the trinuclear alkylzinc aggregate [tBuZn(q)]3 ( 13 ), the pentanuclear oxo cluster [(tBu)3Zn54‐O)(q)5] ( 2 ), and the tetranuclear hydroxo cluster [Zn(q)2]2[tBuZn(OH)]2 ( 3 ). All compounds were characterized in solution by 1H NMR, IR, UV/Vis, and photoluminescence (PL) spectroscopy, and in the solid state by X‐ray diffraction, TGA, and PL studies. Density functional theory calculations were also carried out for these new ZnII complexes to rationalize their luminescence behavior. A detailed analysis of the supramolecular structures of 2 and 3 shows that the unique shape of the corresponding single molecules leads to the formation of extended 3D networks with 1D open channels. Varying the stoichiometry, shape, and supramolecular structure of the resulting complexes leads to changes in their spectroscopic properties. The close‐packed crystal structure of 13 shows a redshifted emission maximum in comparison to the porous crystal structure of 2 and the THF‐solvated structure of 3 .  相似文献   

20.
The synthesis and characterization of dimeric lanthanide amides stabilized by a dianionic N‐aryloxo functionalized β‐ketoiminate ligand are described in this paper. Reactions of 4‐(2‐hydroxy‐5‐tert‐butyl‐phenyl)imino‐2‐pentanone (LH2) with Ln[N(SiMe3)2]3(µ‐Cl)Li(THF)3 in a 1:1 molar ratio in THF gave the dimeric lanthanide amido complexes [LLn{N(SiMe3)2}(THF)]2 [Ln=Nd ( 1 ), Sm ( 2 ), Yb ( 3 ), Y ( 4 )] in good isolated yields. These complexes were characterized by IR spectroscopy, elemental analysis, and 1H NMR spectroscopy in the case of complex 4 . The definitive molecular structures of complexes 1 , 3 , and 4 were determined. It was found that complexes 1 to 4 can initiate the ring‐opening polymerization of L‐lactide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号