共查询到19条相似文献,搜索用时 78 毫秒
1.
锂离子电池负极材料Li_(4-x)K_xTi_5O_(12)结构和电化学性能 总被引:1,自引:0,他引:1
采用固相反应的方法制备了尖晶石型Li4Ti5O12和K掺杂Li4-xKxTi5O12(x=0.02,0.04,0.06)。通过XRD、SEM、BET等对制备材料进行了分析。结果表明,K掺杂没有影响立方尖晶石型Li4Ti5O12的合成,同时也没有改变Li4Ti5O12的电化学反应过程。K掺杂Li4-xKxTi5O12具有比Li4Ti5O12小的颗粒粒径和比Li4Ti5O12大的比表面积、孔容积。适量的K掺杂能够明显改善Li4Ti5O12的电化学性能,尤其是倍率性能,但是过多的K掺杂却不利于材料电化学性能的提高。研究表明,Li3.96K0.04Ti5O12体现了相对较好的倍率性能和循环稳定性。0.5C下,首次放电比容量为161mAh·g-1,3.0和5.0C下,容量保持分别为138和121mAh·g-1。3.0C下,200次循环后容量保持为137mAh·g-1。 相似文献
2.
以乙酰丙酮(ACAC)为螯合剂、聚乙二醇(PEG)为分散剂,采用溶胶-凝胶法合成了尖晶石型Li4Ti5Ol2/TiN材料.考察了TiN膜对尖晶石型Li4Ti5Ol2锂离子电池负极材料电化学性能的影响.利用X射线光电子能谱(XPS)对Li4Ti5O12表面的TiN膜进行了分析.X射线衍射(XRD)和扫描电子显微镜(SEM)分析表明,Li4Ti5Ol2/TiN材料为结晶良好的亚微米纯相尖晶石型钛酸锂.电化学性能测试表明,该材料的首次放电比容量为173.0mAh·g-1,并且具有良好的循环性能,以0.2C、1C、2C、5C倍率放电进行测试,10次循环后比容量分别为170.6、147.6、135.6、111.0mAh·g-1,较之表面无TiN膜的钛酸锂材料表现出更好的倍率特性.循环伏安曲线(CV),交流阻抗图谱(EIS)进一步论证了TiN膜改善了尖晶石型Li4Ti5Ol2锂离子电池负极材料的电化学性能. 相似文献
3.
本文以醋酸锂和钛酸丁酯为原料,以冰醋酸为抑制剂,采用溶胶-凝胶法制备了晶态Li4Ti5O12负极材料。与自制的3种电解液和实验室常用的电解液分别组装成锂/钛酸锂半电池。采用恒流充放电测试、循环伏安法(CV)及交流阻抗法(EIS)对其电化学性能进行研究。研究结果发现:在以环状碳酸酯类(EC、PC)和线性碳酸酯类(MEC)为溶剂、以六氟磷酸锂(LiPF6)为电解质的电解液中添加双乙二酸硼酸锂(LiBOB),有利于提高半电池的性能,首次放电比电容达到了198mA.h.g-1,且放电比电容经多次充放电后衰减得较小。而在电解液中加入碳酸亚乙烯酯(VC),半电池的性能有所下降。Li4Ti5O12对电解液表现出较明显的兼容性。 相似文献
4.
5.
采用溶胶-凝胶法合成碳包覆Li3VO4复合材料(Li3VO4/C),通过X-射线衍射仪(XRD)、扫描电子显微镜(SEM)、热重分析仪(TG)对其进行了表征,探究了该材料作为锂离子电池负极材料的电化学性能。结果表明,该材料具有良好的循环性能和优异的倍率性能。在1.25 C(1 C=400 m Ah/g)的电流密度下,其首次充电比容量为199.6 m Ah/g,循环150次后,其容量保持率为89.2%。此外,在充放电倍率分别为0.5、1、2、5、10 C时,其充电比容量分别为228.7、202、180.5、149.9、116.6 m Ah/g。 相似文献
6.
以葡萄糖作为碳源,通过简单的水热反应获得菱形碳包覆碳酸钴(CoCO3/C)复合材料,并研究了其作为锂离子电池负极材料的电化学性能.晶型和表面形貌通过X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)进行表征,用热重-差热分析法(TG-DTA)来测试CoCO3/C材料中碳的含量,用拉曼光谱分析无定型碳的存在. Barrett-Joyner-Halenda (BJH)则用来分析材料的孔径分布情况.实验表明,碳包覆不仅在CoCO3颗粒表面包覆了一层无定性碳,使得CoCO3材料在充放电过程中保持结构的稳定性,也形成了一些大约30 nm左右的介孔,这种孔的存在有助于电解液中离子的传输,从而提高材料的电化学性能.电极材料在0.90C(1.00C = 450 mAh•g-1)倍率下进行循环测试, 500次后的容量仍保持在539 mAh•g-1,显示出了较好的循环性能.当增加到3.00C倍率时CoCO3/C容量为130 mAh•g-1,再恢复到0.15C倍率时容量依然能够达到770 mAh•g-1,表现出了CoCO3/C具有良好的稳定性. 相似文献
7.
主要合成了具有尖晶石结构的Li4Ti5O12亚微米球电极材料,并研究了其作为锂离子电池负极材料的电化学性能.材料的制备分为三个步骤:TiCl4水解得到金红石相的TiO2,然后将得到的TiO2与LiOH进行水热反应得到中间相LiTi2O4+δ,最后将中间相高温煅烧得到尖晶石结构的Li4Ti5O12.采用XRD、SEM和TEM等手段对材料的结构和形貌进行表征.结果表明,尖晶石相的Li4Ti5O12负极材料具有分级结构,是由20~30nm的小颗粒堆积成约为200~300nm的亚微米球.将制备的Li4Ti5O12材料进行恒电流充放电测试表明,材料具有优异的倍率放电性能和较好的循环可逆性;在1C充放电时,首次放电比容量达到174.3mAh/g,在第5~50次循环过程中仅有微小的不可逆容量损失.采用循环伏安法测得Li+的扩散系数为1.03×10-7cm2/s.研究表明合成的Li4Ti5O12亚微米球在高效可充电锂离子电池中具有良好的应用前景. 相似文献
8.
用钛酸纳米管和LiOH溶液进行离子交换法得到了水合钛酸锂前驱体,进而在不同温度热处理制备了Li4Ti5O12。通过X射线衍射(XRD)、扫描电镜(SEM)、热分析(TG-DSC)和恒电流充放电测试对反应产物进行了研究。结果表明所得前驱体在500~700℃热处理可得到纳米结构的纯相Li4Ti5O12。所得Li4Ti5O12的可逆容量约为160mAh·g-1,循环稳定性随热处理温度的提高而增强,并因具有较短的锂离子扩散距离表现出极佳的倍率性能,在1600mA·g-1(约10C)的电流密度下放电下还保持140mAh·g-1的容量。 相似文献
9.
10.
天然石墨经过浓硫酸氧化处理,酚醛树脂包覆并高温碳化后形成具有核壳结构的碳包覆氧化天然石墨复合材料.采用扫描电子显微镜(SEM),透射电子显微镜(TEM),X射线衍射(XRD),激光显微拉曼光谱(Raman)等检测技术对氧化处理以及酚醛树脂热解碳包覆前后天然石墨材料的结构与形貌进行分析与表征.结果表明,氧化处理与适量的酚醛树脂热解碳包覆有效修复了天然石墨表面的一些缺陷结构,使其表面更为光滑.电化学测试结果显示,经过氧化处理与酚醛树脂热解碳包覆后天然石墨材料电化学性能得到明显提高.酚醛树脂包覆量为9%时,复合材料表现出最好的电化学性能,其首次放电比容量为434.0mAh·g-1,40次循环后,放电比容量保持在361.6mAh·g-1,而未经处理的天然石墨放电比容量仅为332.3mAh·g-1.该改性方法有效提高了天然石墨材料的比容量,对其进一步应用具有重要意义. 相似文献
11.
Li4Ti5O12 (LTO) nanoparticles were prepared by gel‐hydrothermal process and subsequent calcination treatment. Calcination treatment led to structural water removal, decomposition of organics and primary formation of LTO. The formation temperature of spinel LTO nanoparticles was lower than that of bulk materials counterpart prepared by solid‐state reaction or by sol‐gel processing. Based on the thermal gravimetric analysis (TG) and differential thermal gravimetric (DTG), samples calcined at different temperatures (350, 500 and 700°C) were characterized by X‐ray diffraction (XRD), field emitting scanning electron microscopy (FESEM), transmission electron microscopy (TEM), cyclic voltammogram and charge‐discharge cycling tests. A phase transition during the calcination process was observed from the XRD patterns. And the sample calcined at 500°C had a distribution of diameters around 20 nm and exhibited large capacity and good high rate capability. The well reversible cyclic voltammetric results of both electrodes indicated enhanced electrochemical kinetics for lithium insertion. It was found that the Li4Ti5O12 anode material prepared through gel‐hydrothermal process, when being cycled at 8 C, could preserve 76.6% of the capacity at 0.3 C. Meanwhile, the discharge capacity can reach up to 160.3 mAh·g?1 even after 100 cycles at 1 C, close to the theoretical capacity of 175 mAh·g?1. The gel‐hydrothermal method seemed to be a promising method to synthesize LTO nanoparticles with good application in lithium ion batteries and electrochemical cells. 相似文献
12.
Prof. Bo Wang Sisi Hu Lin Gu Dr. Di Zhang Dr. Yazhao Li Prof. Huilan Sun Prof. Wen Li Dr. Qiujun Wang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(71):17097-17102
Reasonably designing and synthesizing advanced electrode materials is significant to enhance the electrochemical performance of lithium ion batteries (LIBs). Herein, a metal–organic framework (MOF, Mil-125) was used as a precursor and template to successfully synthesize the porous mooncake-shaped Li4Ti5O12 (LTO) anode material assembled from nanoparticles. Even more critical, SmF3 was used to modify the prepared porous mooncake-shaped LTO material. The SmF3-modified LTO maintained a porous mooncake-shaped structure with a large specific surface area, and the SmF3 nanoparticles were observed to be attach on the surface of the LTO material. It has been proven that the SmF3 modification can further facilitate the transition from Ti4+ to Ti3+, reduce the polarization of electrode, decrease charge transfer impedance (Rct) and solid electrolyte interface impedance (Rsei), and increase the lithium ion diffusion coefficient (DLi), thereby enhancing the electrochemical performance of LTO. Therefore, the porous mooncake-shaped LTO modified using 2 wt % SmF3 displays a large specific discharge capacity of 143.8 mAh g−1 with an increment of 79.16 % compared to pure LTO at a high rate of 10 C (1 C=170 mAh g−1), and shows a high retention rate of 96.4 % after 500 cycles at 5 C-rate. 相似文献
13.
锂离子电池新型快充负极材料Li4Ti5O12的改性研究 总被引:2,自引:0,他引:2
采用传统固相法制备尖晶石型Li4Ti5O12, 在前驱物中掺杂聚合物裂解碳材料聚并苯(PAS). 经四探针测试仪测量, 电导率提高9个数量级. 复合物的电化学性能测试结果表明, 其循环性和高倍率性能得到了明显改善. 相似文献
14.
Zhihao Huang Guoju Dang Wenping Jiang Yuanyu Sun Meng Yu Prof. Quansheng Zhang Prof. Jingying Xie 《ChemistryOpen》2021,10(3):380-386
Silicon monoxide (SiO) is considered as one of the most promising alternative anode materials thanks to its high theoretical capacity, satisfying operating voltage and low cost. However, huge volume change, poor electrical conductivity, and poor cycle performance of SiO dramatically hindered its commercial application. In this work, we report an affordable and simple way for manufacturing carbon-coated SiO−C composites with good electrochemical performance on kilogram scales. Industrial grade SiO was modified by carbon coating using cheap and environment friendly polyvinyl pyrrolidone (PVP) as carbon source. High-resolution transmission electron microscopy (HRTEM) and Raman spectra results show that there is an amorphous carbon coating layer with a thickness of about 40 nm on the surface of SiO. The synthesized SiO−C-650 composite shows great electrochemical performance with a high capacity of 1491 mAh.g−1 at 0.1 C rate and outstanding capacity retention of 67.2 % after 100 cycles. The material also displays an excellent performance with a capacity of 1100 mAh.g−1 at 0.5 C rate. Electrochemical impedance spectroscopy (EIS) results also prove that the carbon coating layer can effectively improve the conductivity of the composite and thus enhance the cycling stability of SiO electrode. 相似文献
15.
16.
The anode materials Li4?xMgxTi5?xZrxO12 (x=0, 0.05, 0.1) were successfully synthesized by sol‐gel method using Ti(OC4H9)4, CH3COOLi·2H2O, MgCl2·6H2O and Zr(NO3)3·6H2O as raw materials. The crystalline structure, morphology and electrochemical properties of the as‐prepared materials were characterized by XRD, SEM, cyclic voltammograms (CV), electrochemical impedance spectroscopy (EIS) and charge‐discharge cycling tests. The results show that the lattice parameters of the Mg‐Zr doped samples are slightly larger than that of the pure Li4Ti5O12, and Mg‐Zr doping does not change the basic Li4Ti5O12 structure. The rate capability of Li4?xMgxTi5?xZrxO12 (x=0.05, 0.1) electrodes is significantly improved due to the expansile Li+ diffusion channel and reduced charge transfer resistance. In this study, Li3.95Mg0.05Ti4.95Zr0.05O12 represented a relatively good rate capability and cycling stability, after 400 cycles at 10 C, the discharge capacity retained as 134.74 mAh·g?1 with capacity retention close to 100%. The excellent rate capability and good cycling performance make Li3.95Mg0.05Ti4.95Zr0.05O12 a promising anode material in lithium‐ion batteries. 相似文献
17.
18.
由于电子和信息行业的需要, 过去十年锂离子电池得以快速发展. 目前, 锂离子电池仍呈现需求量增长的趋势, 对锂离子电池的安全性要求也越来越高. 因此促使寻找一种比碳/石墨材料更安全, 循环性能更理想的锂离子电池负极材料以满足电动汽车等新兴行业的需求. 尖晶石型Li4Ti5O12作为“零应变材料”具有优异的循环稳定性、价格便宜、容易制备、较高的平台电压和良好的安全性, 已成为锂离子动力电池负极材料的研究热点, 被认为是目前最具应用前景的锂离子电池负极材料. 由于形貌选择对于Li4Ti5O12材料的电化学性能有着至关重要的影响, 本文综述了球形、多孔(中空)结构、纳微结构、核壳结构等不同形貌Li4Ti5O12的合成及其性能研究的最新进展; 总结了各种形貌的优点, 已解决和待解决的问题, 常用合成方法以及各自的适应领域; 并对Li4Ti5O12材料的发展趋势进行了展望. 相似文献
19.
WANG Wei WANG Tao FAN Xuecheng ZHANG Cuilin HU Jinxing CHEN Hui FANG Zhenxing YAN Jiefeng LIU Bing 《高等学校化学研究》2019,35(2):261-270
A facile and green freeze-drying-assisted method was proposed to synthesize C0MoO4 mesoporous nano-sheets(MPNSs).The resulting product exhibits a Mgh specific capacity and good rate perfomance when evalimte an anode material for lithium-ion batteries(LIBs).The reversible specific capacity can be kept at 1105.2 mA·h·g^-1 after 100 cycles at a current density of 0.2 A/g.Even at the current densities of 1 and 4 A/gs the CoMoO4 MPNSs electrode can still retain the reversible capacities of 1148.7 and 540 mA·h·g^-1,respectively.Furthermore,the full cell(LiPePO4 catliode/CoMoO4 MPNSs anode)displays a stable discharge capacity of 146.7 mA·h·g^-1 at 0.1 C(1 C=170 mA/g)together with an initial coulombic efficiency of 98.2%.In addition,the CoMoO4 crystal structure is destroyed and reduced into Co^0 and Mo^0 in the first discharge process.In the subsequent cycles,the attractive Li storage properties come from the reversible conversions between Co/Co^2+and Mo/Mo^6+.The improved electroche-mical performance of CoMoO4 MPNSs is mainly attributed to their unique porous structures,which not only possess a good ion diffusion and electronic conduction pathway,but also provide many cavities to alleviate the volume changes during repeated cycling.This work offers a new perspective to the design of other porous electrode materials with a good energy storage performance. 相似文献