首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— A novel method for the determination of singlet oxygen reaction rate constants is described and applied to studies of cyclohexadiene in methanol and gelatins in H2O and D2O. The technique uses tris (2,2'-bipyridine) ruthenium(II) dication (Ru(bipy)32+) as both singlet oxygen sensitizer and in situ oxygen concentration monitor during irradiation of sealed samples. Because of the high efficiency with which the luminescence of Ru(bipy)32+* can be detected, and the fact that emission lifetimes are used, the method offers some advantages over those previously described. The advantages and disadvantages of the method are discussed. A rate constant of 2.1 (±0.3) x 106 mol-1 dm3 s-1 has been determined for the reaction of 1O2 with cyclohexadiene in methanol. For two different photographic gelatins the sums of reaction and quenching rate constants are 2.0 (±0.4) x 106 and 3.1 (±2.0) x 105 mol-1 dm3 s-1; for swine skin gelatin this value is 3.9 (±2.4) × 105 mol-1 dm3 s-1. Chemical reaction, rather than physical quenching, is the dominant reaction route for gelatins and 1O2.  相似文献   

2.
Abstract— The influence of chloride ion on the rate of decay of triplet methylene blue in 0.01 M acid in the absence and presence of ferrous ions was investigated by means of laser flash-photolysis monitored by kinetic spectrophotometry. Chloride weakly accelerates decay of 3MBH in aqueous solution in the absence of Fe(II). Quenching of 3MBH2+ by Fe(II) is more strongly catalyzed by Cl- in both water and 50 v/v% aq. CH3CN. The uncatalyzed quenching constant, k 5, is of the order of 1 × 106 M -1 s-1 while in 4.8 M aqueous chloride ( μ – 7.2 M ) k 5= (37.2 ± 1.8) × 106 M -1 s-1. A possible role of chloride is as a bridging species in quenching via electron transfer between 3MBH2+ and Fe(II).  相似文献   

3.
Abstract— Flash photolysis at 450 nm has been used to study the quenching of the excited triplet state of lumiflavin and the transient species formed in subsequent reactions in deaerated phosphate buffer (pH 6.9).
The effect of the presence of ferricyanide on the life time of triplet lumiflavin has been studied. The results suggest an energy transfer reaction without concurrent electron transfer reactions. The rate constant for the process was 2.8 times 109 M -1 s-1. The analogous reaction with ferrocyanide could not be observed because of the efficient electron transfer reaction (δG = -20.6 kcal mol-1) leading to the formation of the semireduced lumiflavin and ferricyanide. The rate constant for this reaction was 3.3 times 109 M -1 s-1. The semireduced lumiflavin radical was found to disappear in a second order reaction with a rate constant of 1.7 times 109 M -1 s-1. It was found to react with ferricyanide with a rate constant of 0.7 times 109 M -1 s-1.
A model for the various photochemical and photophysical processes involved in the decay and quenching of the lumiflavin triplet state is suggested and discussed.  相似文献   

4.
A computer-operated spectrograph was recently built at Okazaki, Japan. Different specimens can be placed on a horseshoe-shaped focal curve (10 m long) covering a wavelength range of 250 to 1000 nm so they can be irradiated simultaneously. The linear dispersion is about 0.8 nm/cm. The photon fluence rate on the focal curve is 5 x 1015. photons x cm-2 x s-1 at 300nm and 1 x 1016 photons x cm-2 x s-1 at 600 and at 900 nm. The spectral half width is 5.5 nm or less on the focal curve. The stray light content is about 10-5 of the main peak at the peak wavelength ± 100 nm. Specimens are set in microcomputer-controlled threshold boxes so that wavelengths, photon fluence rates, photon fluences and timing of irradiations are controlled automatically according to a pre-programmed schedule. An optical fiber system is also provided for remote irradiations.  相似文献   

5.
Abstract— The phosphorescence of alcohol dehydrogenase from horse liver (LADH) can be observed at room temperature. The quenching of this long-lived light emission, which comes from a tryptophan residue well buried within the interior of the enzyme structure, was measured. The rate constants for the quenching by the small oxygen molecule and by the I -1ion were found to be 1.4 → 108 M -1 s-1 and 108 M -1 s-1, respectively, at room temperature. The temperature dependence of the quenching yields an activation energy of about 14 kcal/mol. This activation energy and the meaning of the accompanying large pre-exponential factor in the Arrhenius equation, A = 1018 M -l s-1, are discussed in terms of a model in which the quencher threads its way through the protein network.  相似文献   

6.
Abstract— The triplet state characteristics (spectrum, lifetime and quantum yield) for four dye sensi tisers [methylene blue (MB), erythrosin (ER), haematoporphyrin (HP) and riboflavin (RF)] were determined in methanol by laser flash photolysis and singlet oxygen yields (0.60 to 0.48) from time-resolved measurements of the 1270 nm near infrared emission. The reaction of singlet oxygen with four long chain unsaturated phenyl esters [oleate (18: 1), linoleate (18: 2), linolenate (18: 3) and arachidonate (20: 4)] was followed quantitatively using the singlet oxygen luminescence technique and also, after continuous420–700 nm irradiation, by HPLC and other analysis of the isomeric product monohydroperoxides. The overall quantum yield of photooxidation (∼10-2) was shown to be consistent with the observed singlet oxygen quenching constants(2–12 times 104 dm3 mol-1 s-1) for the four esters studied and the singlet oxygen lifetime in methanol (τ∼ 9 μs). The isomer product distribution was interpreted in terms of a dual singlet oxygen and radical mechanism, the radical contribution increasing with sensitiser in the order ER = MB < HP ≪ RF, but also showing some dependence on substrate unsaturation. Evidence is presented for singlet oxygen quenching by MB and RF ( kO = 1.6 and 6.0 times 107 dm3 mol-1 s-1) and for the accelerated photobleaching of the dye sensitisers in the presence of the unsaturated esters.  相似文献   

7.
Abstract— Reactions of the triplet state of lumiflavin (3LF) in water adjusted at pH 7.2 were reexamined by means of a Xe-flash photolysis and a laser photolysis. Measurements of the decay of 3LF were made on solutions of LF ranging in the concentration from 4 to 61 times 10-6 mol/dm3. A one-electron reduced and a one-electron oxidized species of lumiflavin (LF- and LF+) were produced in the first decay stage of 3LF with a high efficiency (0.6 ± 0.1) in a bimolecular triplet-triplet reaction. The product radicals (LFH- and LF+) quench 3LF very efficiently (3 ± 0.8 × 109 mol-1dm3 s-1) compared with LF in the ground state (> 2 × 107 dm3 mol-1).  相似文献   

8.
Abstract— Weak luminescence was detected using photon counting equipment, from oxygenated, liquid cultures of Escherichia coli during two stages of its growth cycle. The first period of emission occurred during the exponential phase of growth and comprised a UV(210–330 nm) band and a visible region(450–620 nm) band, the total intensity being (1.65 ± 0.12) x 103 counts s-1. The second period of emission occurred during the stationary phase of growth and comprised only a visible region(450–620 nm) band of intensity (8.72 ± 0.15) x 103 counts s-1. When the growth temperature was raised from 306.15 to 310.15 K, the above emission intensities were approximately halved, but the spectra were not changed significantly. No luminescence was observed at either temperature when the E. coli was grown anaerobically. The visible region luminescence was attributed to excited carbonyl groups and excited singlet O2 dimers formed during the decomposition of lipid peroxides. The UV component was tentatively assigned to oxidative side reactions accompanying the synthesis of proteins.  相似文献   

9.
Abstract— The mechanism for photodegradation of the ultraviolet photostabilizer 2-(2'-hydroxy-5'-methylphenyl)benzotriazole (TIN P) upon direct and dye-sensitized (singlet molecular oxygen [O2(1Δg)]-mediated) irradiation was studied. From the experimental TIN P photodegradation rate data, and low temperature (77 K) fluorescence and phosphorescence quantum yields, one can conclude that the photodegradative process involves phosphorescent states of TIN P. The open conformer of TIN P quenches O2(1Δg) by physical scavenging with a rate constant (kq) in dimethylsulfoxide of 2.8 times 106 M -1 s-1. The intramolecular hydrogen-bonded conformer does not appreciably interact with O2(1Δg). In the presence of a relatively high concentration of OH- (either 5 times 10-2 M KOH in ethanol or water at pH 13), the ionic form of TIN P (with an ionized phenol group) physically and chemically quenches O2(1Δg). The reaction rate constant ( k r) is 1 times 10 8 M -1 s-1, and the ratio k q/ k r is approximately three in alkaline aqueous media.  相似文献   

10.
Abstract— Radiolytic formation and peroxidation of fatty acid radicals have been investigated by pulse radiolysis techniques in oleate, linoleate, linolenate and arachidonate systems. A strong absorption band at 280 nm associated with conjugated radicals, Rconj, formed in polyunsaturated fatty acid moieties has been used as a probe for kinetic processes occurring at doubly allylic sites in the hydrocarbon chain. Formation of Rconj by O- has been found to be more efficient than the less selective OH radical. Peroxidation of Rconj is shown to be somewhat slower, ( k R+ O2˜ 3 × 108 M -1 s-1), than O2 reactions with radicals in oleate ( k R+ O2= 1 × 109 M -1 s-1). Peroxy radicals generated in these reactions disappear slowly by essentially second order processes (2 k RO1˜ 107 M -1 s-1). The superoxide radical, O-2, shows little if any reactivity towards 0.01 M linolenate or arachidonate over periods of 20 s.  相似文献   

11.
Abstract— Flash photolysis of neutral red between pH 1.3 and pH 11 yields the triplet species 3DH2+23DH+ and 3D. Both 3DH2+2 and 3D exhibit first order decay with rate constants of 1.6 ± 0.3 × 104 s-1 but 3DH+ decays within the lifetime of the flash. Over the entire pH range, ascorbic acid quenches the triplet, forming the semireduced radicals DH3+2 DH2+ and DH, all of which exhibit second order decay with k = 1.8 ± 0.4 ± 108 M -1s-1 most probably by recombination with semioxidized ascorbic acid. The dependence of the rate of decay of radical neutral red on the identity of reversible reductants supports the back-electron transfer mechanism, as does digital simulation of complex radical disproportionation schemes. In contrast to the efficient reduction of triplet neutral red by ascorbic acid, its reduction by EDTA is quite inefficient.  相似文献   

12.
Abstract— –Small amounts of N -methyl phenazonium methosulphate (PMS) added to a suspension of Chlorella pyrenoidosa accelerate the emission of the long-lived far-red induced afterglow without greatly changing the amount of light emitted. The effect is noticeable in dilute suspensions at a PMS concentration of 10-9 M. The concept of afterglow unit is introduced and defined as that part of the sample in which the rate of energy reemission can be controlled by a single molecule of PMS. The number of chlorophyll molecules per afterglow unit is about 105. It is possible that the afterglow unit is identical to the thylakoid.
The rate constant for the final first order decay phase of afterglow at room temperature is about 0.7 min-1 without PMS and about 3 times larger for a unit with one PMS molecule.
Diuron (DCMU) lowers the rate of afterglow decay. Desaspidin on the other hand decreases the amount of light emitted without affecting the decay rate. Carbonylcyanide- m -chlorophenyl hydrazone (CCCP) decreases the afterglow over the whole time-range and increases the decay rate. A kinetic model is developed to account for the results.  相似文献   

13.
Abstract— The chemical reaction rate constant of bilirubin with singlet oxygen in basic aqueous solution has been redetermined to be 3.5 × 108 M-1 s-1 by a competitive technique using a 1,3-diphenylisobenzofuran in sodium dodecyl sulfate micelles. Bilirubin also physically quenches a singlet oxygen with a rate constant of 9 × 108 M -1 s-1. The lifetime of singlet oxygen in D2O solution has been determined to be 35 μ s . The absorption cross-section for the molecular oxygen 3g-→1δ g + 1 v electronic transition at 1.06μn in aqueous solution is unexpectedly larger than the gas paase cross-section.  相似文献   

14.
Abstract— The spectra and molar absorbances of the HO2 and O2- free radicals have been redetermined in aqueous formate solutions by pulse and stopped-flow radiolysis as well as by 60Co gamma-ray studies. The extinction coefficients at the corresponding maxima and 23°C are 225= 1400 ± 80 M -1 cm-1 and 225= 2350 ± 120 M -1 cm-1 respectively. Reevaluation of earlier published rate data in terms of the new extinction coefficients yielded the following rate constants for the spontaneous decay of HO2 and O2-: K Ho2+HO2= (8.60 ± 0.62) × 105 M -1 s-1; K Ho2+O2-= (1.02 ± 0.49) × 108 M -1 s-1; K Ho2+O2- < 0.35 M -1 s-1. For the equilibrium HO2→ O2-+ H+ the dissociation constant is K Ho2= (2.05 ± 0.39) × 10-5 M or p K HO2= 4.69 ± 0.08. G (O2-) has been evaluated as a function of formate concentration.  相似文献   

15.
Abstract— An alternative method to that used by Mar and Roy (1974) for the determination of the kinetics of the back reaction of photosystem II from the luminescence decay curve in the presence of 3–(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) has been suggested. The new theory relies upon two hypotheses: the well-known recombination hypothesis of luminescence and the assumption that the luminescence yield in the seconds region is given by the variable part of the live fluorescence yield. The second hypothesis was introduced since assuming a constant luminescence yield results in kinetic data that are not consistent with measurements of the kinetics of the back reaction by the restoration of the area over the fluorescence rise curve. The dependence of the live fluorescence yield from the concentration of closed PS II traps was assumed to be represented by Delosme's expression originally derived for the rise curve of the fluorescence yield in the presence of DCMU.
The theory is based on the fact that then the partial and total light sums of luminescence are simple functions of the concentration of the primary electron acceptor Q- of PS II. Thus, after integrating the luminescence decay curve the theory permits a convenient evaluation of the kinetics of the back reaction [Q-]( t ) in terms of the partial and total light sum.
This method was applied in order to determine the kinetics of the back reaction in Chlorella fusca in the presence of DCMU. It is shown that the kinetics of deactivation of the S, state can be described using the expression for the kinetics of the back reaction derived by Mar and Roy. As an alternative explanation, a biphasic first order decay of S2 is proposed.  相似文献   

16.
CROCETIN, A WATER SOLUBLE CAROTENOID MONITOR FOR SINGLET MOLECULAR OXYGEN   总被引:1,自引:0,他引:1  
Abstract The water soluble carotenoid crocetin has been studied as a singlet molecular oxygen monitor in D2O solution, pD 8.4. Crocetin reacts chemically with singlet molecular oxygen with a rate constant of 4 x 108 M -1 s-1. The rate constant for total quenching, chemical and physical, is 2.5 x 109 M -1 s-1. Crocetin shows evidence for a reversible reaction with singlet molecular oxygen, as demonstrated by a fairly rapid absorption recovery after bleaching.  相似文献   

17.
Luminescence spectra and luminescence decay kinetics of uranyl sulphate water and uranyl nitrate acetone solutions of different concentrations have been studied. Similar experiments have been done with uranyl sulphate powder under vacuum. It has been experimentally shown that the hydrolysis of uranyl sulphate in water takes place, and under low salt concentrations (0.1-4.0 times 10-4 M) a luminescence of a basic form of the photoexcited ion with a tentative structure of UO2OH+* has been observed. The luminescence of the acidic form UO+* has been observed under higher salt concentrations (1–4 times 10-2 M) in water and under any salt concentration in acetone. The acidic form has the characteristic emission spectrum possessing vibrational structure. The luminescence concentrational quenching of both photoexcited uranyl forms and exciplex emission have not been observed. The effect of a number of organic quenchers and molecular oxygen on uranyl luminescence has been studied. There is no luminescence quenching by O2 up to 2 times 106 Pa (20 atm) pressure. The low effectiveness of energy transfer from the photoexcited uranyl forms has been explained in terms of strong steric screening of 5f-uranium (VI) orbital by oxygen atoms and by external filled up uranium electronic shells.  相似文献   

18.
LUMIFLAVIN-SENSITIZED PHOTOOXYGENATION OF INDOLE   总被引:1,自引:0,他引:1  
Abstract— The lumiflavin-sensitized photooxygenation of indole in aqueous solutions has been investigated by means of steady light photolysis and flash photolysis. The semiquinone of lumiflavin and the half-oxidized radical of indole were formed by the reaction between triplet lumiflavin and indole (3.7 times 109 M -1 s-1). The semiquinone anion radical of lumiflavin reacted with oxygen to form superoxide radical. The triplet state of lumiflavin also reacted with oxygen forming singlet oxygen, 1O2. But the reaction between 1O2 and indole (7 times 107 M_l s_1; estimated from steady light photolysis using Rose Bengal as a sensitizer) was far less efficient than the reaction between indole and triplet lumiflavin. The quantum yield of the lumiflavin-sensitized photooxygenation of dilute indole via radical processes was much higher than that via 1O2 processes, though appreciable 1O2 was formed.  相似文献   

19.
Abstract— From time-resolved measurements of the decay of singlet molecular oxygen phosphorescence at 1270 nm in D2O, direct estimates have been gained for the rate constants of the singlet oxygen reactions with a group of sulphur compounds in the pD range 5 to 13. In the case of most of the thiols, the results are consistent with singlet oxygen reacting exclusively with the thiolate anions. At the normal physiological pH 7, the apparent rate constants (in units of M-1 s-1) were 8.9 times 106 (cysteine), 2.5 times 106 (N-acetyl cysteine), 2.9 times 106 (glutathione), 3.0 times 105 (2-mercaptoethanol), 2.3 times 107 (ergothioneine) and 2.7 times 106 (2-mercaptopropionyl glycine). For methionine the rate constant, 1.4 times 107, was independent of pD in the range studied. These sulphur compounds, in particular N-acetyl cysteine and ergothioneine, or related compounds, might be considered as possible candidates for protection against skin photosensitivity side effects associated with the photodynamic therapy of solid tumours and as observed in the disease erythropoietic protoporphyria.  相似文献   

20.
Abstract— From spectroscopic data and rate constants in the literature, equilibrium constants and rates of thermal formation of singlet oxygen (1Δg and 1Σg+) were calculated for a number of conditions. For the gas phase we estimate K eq(1Δg3Σg-) = 1.67 exp(-94.31 KJ/RT) and K eq(1Σg+/3Σg-) = 0.33 exp(-157.0 KJ/RT). The calculated rate constants for the 3Σg+1Δg transition of O2 at 25°C varied from 2.5 × 10-11 s-1 in water to 4.8 × 10-16 s-1 in air, assuming equal solvent interactions with the ground and excited states. Physical quenchers for singlet oxygen are expected to be catalysts for its thermal formation. Equations are presented which allow one to estimate whether such catalysis by quenchers will result in a pro-oxidant effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号