首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trifloxystrobin, fenhexamid and famoxadone belong to the generation of fungicides acting against a broad spectrum of fungi and widely used in Integrated Pest Management strategies in different agricultural crops but mainly in viticulture. In the present work, a gas chromatographic (GC) method for their determination was developed and validated on tomato, grape and wine matrices. The method was based on a simple one step liquid-liquid microextraction with cyclohexane/dichloromethane (9+1, v/v) and determination of fungicides by gas chromatography with nitrogen phosphorous (NP-) and electron capture (EC-) detection, and ion trap mass spectrometry (ITMS) for confirmation. The method was validated by recovery experiments, assessment of matrix effect and calculation of the associated uncertainty. Recoveries for GC-NPD and GC-ECD were found in the range of 81-102% with RSD <12%, while matrix-matched calibration solutions were imposed for quantification. LOQs ranged from 0.005 to 0.05 mg/kg and 0.01 to 0.10 mg/kg for the GC-ECD and GC-NPD, respectively, depending on the sensitivity of each compound with trifloxystrobin being the most sensitive. The expanded uncertainty, calculated for a sample concentration of 0.10 mg/kg, ranged from 4.8 to 13% for the GC-ECD and from 5.4 to 29% for the GC-NPD. The concentration levels for famoxadone residues found in tomato and grape samples from field experiments were clearly below the EU established MRL values, thus causing no problems in terms of food safety.  相似文献   

2.
An analytical method consisting of extraction, clean-up, and analysis by gas chromatography-electron-capture detection (GC-ECD) was developed for the determination of trichlorobenzenes (TCBs) in fish samples. Two extraction methods, saponification and liquid-liquid extraction (S-LLE), and microwave-assisted extraction (MAE), were evaluated. In both cases, n-pentane was used as the extraction solvent. For S-LLE, the recoveries ranged from 66.6+/-9.1% for 1-bromo-4-chlorobenzene (4-BCB) to 93.5+/-4.9% for 1,2,4-trichlorobenzene (1,2,4-TCB). The recoveries were significantly lower, between 31.0+/-3.9% for 1,2,3-trichlorobenzene (1,2,3-TCB) and 52.3+/-3.0% for 1,3,5-trichlorobenzene (1,3,5-TCB), in the absence of fish. Proteins and glycerides of the fish tissue seemed to compete with TCBs for the base, and hence decreased their decomposition rate. In the case of MAE, the recoveries were highly dependent on the pressure applied during extraction. At 5 bar, much higher recoveries were obtained, from 66.7+/-15.6% for 4-BCB to 79.9+/-13.6% for 1,2,4-TCB, than at 1 bar. Sulfur formation was, however, observed at 5 bar, and interfered with the GC-ECD analysis of TCBs. Sulfur was adequately removed by copper powder treatment, which was shown not to affect the recovery of analytes. The recoveries of target analytes by S-LLE and MAE did not differ statistically (t-test, alpha = 0.01). Both methods were appropriate for the detection of TCBs at concentration levels typically observed in marine biota, i.e. approximately 1 ng/g. S-LLE was, however, more time consuming, and required larger volumes of high-purity organic solvents than MAE.  相似文献   

3.
A simple, rapid, and accurate method is described for the determination of residual fluvalinate in beeswax. The procedure consists of partitioning on a disposable column of diatomaceous earth (Extrelut), followed by chromatographic cleanup on a Florisil cartridge. The final extract is analyzed by capillary gas chromatography with electron-capture detection (GC-ECD). Briefly, wax samples were dissolved in n-hexane, and the solutions were sonicated and transferred to Extrelut columns. The fluvalinate was extracted with acetonitrile, and a portion of the extract was cleaned up on a Florisil cartridge. The fluvalinate was eluted with diethyl ether-n-hexane (1 + 1) and directly determined by GC-ECD. Recoveries from wax samples spiked at 5 fortification levels (100-1500 microg/kg) ranged from 77.4 to 87.3%, with coefficients of variation of 5.12-8.31%. The overall recovery of the method was 81.4 +/- 3.2%, and the limit of determination was 100 microg/kg.  相似文献   

4.
Two extraction procedures, i.e. conventional liquid-liquid extraction (LLE) and liquid solid-phase microextraction (SPME) for extraction of the oximes formed after derivatization of carbonyl compounds with o-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine (PFBHA) in alcoholic solutions have been compared. The limit of detection for LLE followed by GC-ECD determination of C1-C6 was in the range of 0.23-3.3 microg/L, whereas for liquid SPME 0.005-0.33 microg/L. Both methods elaborated can be applied to the determination of carbonyl compounds present in spirits and alcoholic beverages.  相似文献   

5.
Gas chromatography with electron capture detection (GC-ECD) is a highly explosive-sensitive analytical technique. However, its application to the analysis of sediment extracts is hampered by the presence of numerous endogenous interferences. In the present study, solid-phase microextraction (SPME) was used both as a purification technique for sediment extracts and as an extraction technique for water samples prior to analysis by GC-ECD. SPME/GC-ECD coupling was optimized and applied to the trace analysis of nine explosives including nitroaromatics and RDX in real seawater and marine sediment samples. Addition of a high concentration of salt (30%, w/v) in the aqueous medium and use of a carbowax/divinylbenzene (CW/DVB) coating led to optimal extraction efficiencies. Method detection limits (MDLs) ranged from 0.05 to 0.81 microg/L in water and from 1 to 9 microg/kg in dry sediment. Except for RDX, spike recoveries in seawater were satisfactory (89-147%) when samples were fortified at 2 microg/L of each analyte. Spike recoveries from dry sediment fortified at 10 microg/kg of each analyte gave lower recoveries but these could also be due to degradation in the matrix. With a smaller volume of aqueous sample required compared to solid-phase extraction (SPE), SPME is an attractive method for the analysis of limited volumes of sediment pore-water. Moreover, the use of SPME eliminated interferences present in sediment extracts thus allowing the detection of the target analytes that were otherwise difficult to detect by direct injection.  相似文献   

6.
In the present work, an analytical multiresidue method has been developed for the analysis of 32 organochlorine, organophosphorus and organonitrogen pesticides at microg kg(-1) levels in virgin olive oil. The method consists of the extraction of the pesticides with acetonitrile saturated in n-hexane followed by a clean-up process based on gel permeation chromatography (GPC) with ethyl acetate-ciclohexane (1:1) as mobile phase to separate the low-molecular mass pesticides from the high-molecular mass fat constituents of the oil. The target compounds were determined in the final extract by gas chromatography (GC) using thermoionic specific (TSD) and electron-capture (ECD) detection. In the case of positive samples, the amounts found were confirmed by GC-MS/MS, being the results in good agreement. Recoveries and RSDs (n = 10) values were 91-124% and 1-8% (GC-ECD), 82-100% and 9-20% (GC-TSD), and 89-105% and 4-14% (GC-MS/MS), respectively. The three proposed methods were applied to samples collected directly in two olive mills located in the Jaén province (Spain). Specifically, 24 samples of virgin olive oil were collected. The most frequently pesticide residues found were the herbicides terbuthylazine and diuron and endosulfan sulfate, a degradation product of the insecticide endosulfan. The herbicide concentration was higher in those oil samples obtained from olives which were collected from the ground after they had fallen down than in those oil samples from olives harvested directly from the tree. The GC-MS/MS developed method was also applied to the analysis of an olive oil sample from a proficiency test spiked with organochlorine pesticides and all the values obtained were within the specified "satisfactory" range.  相似文献   

7.
This paper deals with the different GC-MS analytical conditions adopted by four laboratories in an attempt to confirm the accuracy of the GC-electron-capture detection (ECD) analytical results during the international collaborative study for the establishment of the AOAC Official Method 998. 01. What is especially noted is that two laboratories have conducted comparative analysis of the respective 12 blind samples with both methods of GC-ECD and GC-MS, and the analytical results of the two methods turn out to be basically identical. This fully demonstrates that GC-MS is not only an effective confirmation tool in the analysis of the pyrethroid residues but also of sufficient sensitivity regarding the maximum residue limit of determination prescribed by FAO/WHO. Moreover, its selectivity is better than GC-ECD.  相似文献   

8.
Polychlorinated biphenyls (PCBs) in sludge are usually extracted by a technique such as Soxhlet with subsequent fractionation prior to long GC runs using GC-ECD or GC-HRMS. In this study, the extraction of selected chlorinated biphenyls (CBs) from a spiked sludge sample by three rapid techniques, i.e. ultrasonic (USE), pressurised-liquid (PLE), and microwave-assisted (MAE) extraction using a domestic microwave, was studied, with subsequent direct GC-ECD, GC-MS, or GC x GC-microECD analysis of the extracts. The main goal was to select an appropriate, and miniaturised, extraction method after only a brief optimisation and demonstrate the power of GC x GC analysis of dirty extracts. For PLE similar CB recoveries were found when extracting with either n-hexane or n-hexane/acetone (1/1). For USE and MAE, n-hexane/acetone (1/1) was the preferred extraction solvent. USE gave the best recoveries (80-95%; except 130% for CB 105). The only clean-up needed prior to GC-MS or GC x GC-gECD analysis was the removal of sulphur-containing compounds. GC-ECD was not suitable for these dirty extracts. The lowest LODs for the CBs (20 fg or 0.1 ng/g sludge) were found when combining USE and GC x GC-microECD, because of the powerful extraction, high separation power and excellent detectability provided by this technique.  相似文献   

9.
Gas chromatography coupled with electron capture detector (GC-ECD) was successfully developed and applied for the rapid determination of acrylamide in conventional fried foods, such as potato crisps, potato chips, and fried chicken wings. The method included defatting with n-hexane, extraction with aqueous solution of sodium chloride (NaCl), derivatization with potassium bromate (KBrO3) and potassium bromide (KBr), and liquid-liquid extraction with ethyl acetate. The final acrylamide extract was analyzed by GC-ECD for quantification and by GC-MS for confirmation. The chromatographic analysis was performed on the HP-INNOWax capillary column, and good retention and peak response of acrylamide were achieved under the optimal conditions (numbers of theoretical plates N = 83,815). The limit of detection (LOD) was estimated to be 0.1 microg kg(-1) on the basis of ECD technique. Recoveries of acrylamide from conventional samples spiked at levels of 150, 500 and 1000 microg kg(-1) (n = 4 for each level) ranged between 87 and 97% with relative standard deviations (RSD) of less than 4%. Furthermore, the GC-ECD method showed that no clean-up steps of acrylamide derivative would be performed prior to injection and was slightly more sensitive than the MS/MS-based methods. Validation and quantification results demonstrated that this method should be regarded as a new, low-cost, and robust alternative for conventional investigation of acrylamide.  相似文献   

10.
杨丽莉  袁倚盛  屠锡德 《色谱》2000,18(6):543-545
 建立了人血浆中溴己新的气相色谱 电子捕获测定法 ,对溴己新胶囊在健康人体内的药代动力学进行了研究。色谱柱为 5 %SE 30 (2m× 3mmi.d .)硅烷化玻璃柱。 5 氯 2 氨基二苯甲酮为内标 ,血浆样品加入磷酸盐缓冲液 (pH 6 0 )后用正己烷 二氯甲烷 (体积比为 9∶1)提取。线性范围为 1 0 μg/L~ 5 0 0 μg/L ,r =0 9994。人血浆中最小检测质量浓度为 0 5 μg/L。方法重现性好 ,日内、日间RSD分别小于 4 5 6 %和 7 11% ,平均回收率 97 5 %。 8名健康志愿者口服 8mg溴己新胶囊后 ,其体内代谢过程符合一房室模型。  相似文献   

11.
Shi XZ  Song SQ  Sun AL  Liu JH  Li DX  Chen J 《The Analyst》2012,137(2):437-443
A simple, efficient, and environmentally friendly membrane-assisted solvent extraction (MASE) method for the extraction and preconcentration of six pyrethroid insecticides from aquaculture seawater samples followed by gas chromatography-electron capture detection (GC-ECD) was successfully proposed. The operating conditions for MASE, such as the extraction solvent, solvent volume, NaCl concentration, stirring rate, extraction time, and temperature, were optimized. Compared to conventional Florisil-solid phase extraction (SPE), higher extraction recoveries (85.9% to 105.9%) of three spiked levels of the six pyrethroid pesticides in aquaculture seawater were obtained using MASE, and the RSD values were lower than 7.9%. The limits of detection (LOD, signal-to-noise ratio (S/N)=3) and quantification (LOQ, S/N = 10) were in the range of 0.037-0.166 and 0.12-0.55 μg L(-1), respectively. The results demonstrate the excellent applicability of the MASE method in analyzing the six pyrethroid pesticides in aqueous samples. The proposed method exhibited a high potential for routine monitoring analysis of pyrethroid insecticides in seawater samples.  相似文献   

12.
A method for the determination of zinc octoate (zinc 2-ethylhexanoate) and acypetacs zinc in occupational hygiene samples and wood treatments formulations is described. The zinc carboxylates are liquid-liquid partitioned between toluene and 1 M HCl, with the liberated acids being extracted into the toluene and zinc (chloride) into the acid. The carboxylic acids are then methylated using trimethylsilyldiazomethane-methanol and the resultant methyl esters are selectively and sensitively analysed by gas chromatography with mass selective detection (GC-MS). Alternatively, the zinc content of the acid extract can be analysed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). GC-MS is the preferred method of analysis for zinc octoate, where a single analyte (methyl-2-ethylhexanoate) is produced for analysis. Because acypetacs zinc contains a complex mixture of carboxylates, quantitative GC-MS analysis of the methyl esters produced is impractical and ICP-AES is the preferred method for quantitation. In this case, GC-MS can be used to confirm the identity of the product used. The analysis of occupational hygiene samples (cotton pads, gloves and socks as well as Tenax tubes and GF/A filters) spiked with metal carboxylates is demonstrated. Recoveries around 70-90% and reproducibilities of 5-23% (n=6-8) were typically achieved for the determination of tin octoate (a surrogate for zinc octoate) at spiking levels ranging from 4 to 190 microg per sampling device. Recoveries around 102-106% and reproducibilities of 10-12% (n=5-6) were typically achieved for acypetacs zinc at spiking levels ranging from 100 mg per sampling device. Reaction yields for the octoate methylation reaction were in the region of 85-87%. The method was used to monitor for occupational exposure to zinc octoate and acypetacs zinc during the application of wood treatments to fences.  相似文献   

13.
Here we present the validation and the comparative study of two chromatographic methods for quantifying 2,4,6-trichloroanisole (TCA) in wines (red, rosé and white wines). The first method involves headspace solid-phase microextraction and gas chromatography with electron-capture detection (ECD). The evaluation of the performance parameters shows limit of detection of 0.3 ng l(-1), limit of quantification of 1.0 ng l(-1), recoveries around 100% and repeatability of 10%. The second one implies a headspace solid-phase microextraction and gas chromatography with mass spectrometric detection. The performance parameters of this second method are limit of detection of 0.2 ng l(-1), limit of quantification of 0.8 ng l(-1) and repeatability of 10.1%. From the comparative study we can state that both methods provide similar results and the differences between them are the better sensitivity of the GC-ECD method and the very shorter chromatogram running time of the GC-MS method. The two methods are able to quantify TCA below the sensorial threshold in red, rosé and white wines using just a calibration graph, thus they could be a very good tool for quality control in wineries.  相似文献   

14.
A chiral assay for amphetamine enantiomers in rat liver microsomal incubates is based on derivatization with (S)-(-)-N-(trifluoroacetyl)-prolyl chloride (S-TFPC), capillary chromatographic separation of the diastereomeric amide derivatives, and detection by a flame ionization detector. The method is capable of detecting low levels of S- or R-amphetamine. The assay is linear from 5 to 250 micrograms/mL for each enantiomer, and the limit of detection is 0.5 microgram/mL. The analytical method affords the average recoveries of 77.53 +/- 5.22% for R-amphetamine and 74.47 +/- 3.08% for S-amphetamine. The method allows the study of the metabolic depletion of S- and R-amphetamine in rat liver microsomal incubates. The time-dependent concentration of amphetamine enantiomers in rat liver microsomes was determined, and the stereoselectivity of amphetamine phase I metabolism was observed.  相似文献   

15.
Simultaneous dispersive liquid-liquid microextraction (DLLME) and derivatization combined with gas chromatography-electron-capture detection (GC-ECD) was used to determine chlorophenols (CPs) in water sample. In this derivatization/extraction method, 500 microL acetone (disperser solvent) containing 10.0 microL chlorobenzene (extraction solvent) and 50 microL acetic anhydride (derivatization reagent) was rapidly injected by syringe in 5.00 mL aqueous sample containing CPs (analytes) and K(2)CO(3) (0.5%, w/v). Within a few seconds the analytes derivatized and extracted at the same time. After centrifugation, 0.50 microL of sedimented phase containing enriched analytes was determined by GC-ECD. Some effective parameters on derivatization and extraction, such as extraction and disperser solvent type and their volume, amount of derivatization reagent, derivatization and extraction time, salt addition and amount of K(2)CO(3) were studied and optimized. Under the optimum conditions, enrichment factors and recoveries are in the range of 287-906 and 28.7-90.6%, respectively. The calibration graphs are linear in the range of 0.02-400 microg L(-1) and limit of detections (LODs) are in the range of 0.010-2.0 microg L(-1). The relative standard deviations (RSDs, for 200 microg L(-1) of MCPs, 100 microg L(-1) of DCPs, 4.00 microg L(-1) of TCPs, 2.00 microg L(-1) of TeCPs and PCP in water) with and without using internal standard are in the range of 0.6-4.7% (n=7) and 1.7-7.1% (n=7), respectively. The relative recoveries of well, tap and river water samples which have been spiked with different levels of CPs are 91.6-104.7, 80.8-117.9 and 83.3-101.3%, respectively. The obtained results show that simultaneous DLLME and derivatization combined with GC-ECD is a fast simple method for the determination of CPs in water samples.  相似文献   

16.
A new method was developed for analysing 4-ethylguaiacol and 4-ethylphenol in the aroma of red wines using dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry detection (GC-MS). Parameters such as extraction solvent, sample volume and disperser solvent were studied and optimised to obtain the best extraction results with the minimum interference from other substances, thus giving clean chromatograms. The response linearity was studied in the usual concentration ranges of analytes in wines (50-1500 microg/L). Repeatability and reproducibility of this method were lower than 5% for both volatile phenols. Limits of detection and limits of quantification were also determined, and the values found were 28 and 95 microg/L for 4-ethylguaiacol and 44 and 147 microg/L for 4-ethylphenol, respectively. This new method has been used for the determination of the volatile phenols concentration in different samples of Tannat wine affected by Brettanomyces contamination.  相似文献   

17.
A rapid method for the determination of flunitrazepam and desmethylfflunitrazepam in human serum in the range 10-300 ng/ml is described. Both drugs are isolated from biological material by means of a single extraction, part of the organic phase is evaporated to dryness and the residue is dissolved in a small volume of benzene. Without further purification, the substance is determined gas chromatographically with an electron-capture detector configuration of 63Ni-type. The method permits the quantitative determination of at least 25-300 ng/ml with an overall recovery of flunitrazepam of 99.7 +/- 4.9% and of desmethylflunitrazepam of 98.6 +/- 7.8% from serum. All calculations were carried out by a data system that was programmed for this purpose. The limit of detection for flunitrazepam is of the order of 1 ng/ml in serum. The method is sufficiently sensitive and specific for therapy control purposes. The time needed for an analysis is less than 1 h.  相似文献   

18.
A QuEChERS method has been developed for the determination of 14 organochlorine pesticides in 14 soils from different Portuguese regions with wide range composition. The extracts were analysed by GC-ECD (where GC-ECD is gas chromatography-electron-capture detector) and confirmed by GC-MS/MS (where MS/MS is tandem mass spectrometry). The organic matter content is a key factor in the process efficiency. An optimization was carried out according to soils organic carbon level, divided in two groups: HS (organic carbon >2.3%) and LS (organic carbon <2.3%). The method was validated through linearity, recovery, precision and accuracy studies. The quantification was carried out using a matrix-matched calibration to minimize the existence of the matrix effect. Acceptable recoveries were obtained (70-120%) with a relative standard deviation of ≤16% for the three levels of contamination. The ranges of the limits of detection and of the limits of quantification in soils HS were from 3.42 to 23.77 μg kg(-1) and from 11.41 to 79.23 μg kg(-1), respectively. For LS soils, the limits of detection ranged from 6.11 to 14.78 μg kg(-1) and the limits of quantification from 20.37 to 49.27 μg kg(-1) . In the 14 collected soil samples only one showed a residue of dieldrin (45.36 μg kg(-1) ) above the limit of quantification. This methodology combines the advantages of QuEChERS, GC-ECD detection and GC-MS/MS confirmation producing a very rapid, sensitive and reliable procedure which can be applied in routine analytical laboratories.  相似文献   

19.
A simple and rapid new dispersive liquid-liquid microextraction technique (DLLME) coupled with gas chromatography-ion trap mass spectrometric detection (GC-MS) was developed for the extraction and analysis of triazine herbicides from water samples. In this method, a mixture of 12.0 microL chlorobenzene (extraction solvent) and 1.00 mL acetone (disperser solvent) is rapidly injected by syringe into the 5.00 mL water sample containing 4% (w/v) sodium chloride. In this process, triazines in the water sample are extracted into the fine droplets of chlorobenzene. After centrifuging for 5 min at 6000 rpm, the fine droplets of chlorobenzene are sedimented in the bottom of the conical test tube (8.0+/-0.3 microL). The settled phase (2.0 microL) is collected and injected into the GC-MS for separation and determination of triazines. Some important parameters, viz, type of extraction solvent, identity and volume of disperser solvent, extraction time, and salt effect, which affect on DLLME were studied. Under optimum conditions the enrichment factors and extraction recoveries were high and ranged between 151-722 and 24.2-115.6%, respectively. The linear range was wide (0.2-200 microg L(-1)) and the limits of detection were between 0.021 and 0.12 microg L(-1) for most of the analytes. The relative standard deviations (RSDs) for 5.00 microg L(-1) of triazines in water were in the range of 1.36-8.67%. The performance of the method was checked by analysis of river and tap water samples, and the relative recoveries of triazines from river and tap water at a spiking level of 5.0 microg L(-1) were 85.2-114.5% and 87.8-119.4%, respectively. This method was also compared with solid-phase microextraction (SPME) and hollow fiber protected liquid-phase microextraction (HFP-LPME) methods. DLLME is a very simple and rapid method, requiring less than 3 min. It also has high enrichment factors and recoveries for the extraction of triazines from water.  相似文献   

20.
A hollow fiber liquid phase microextraction (HF-LPME) and gas chromatographic-electron capture detection (GC-ECD) method for the determination of six fungicides (chlorothalonil, hexaconazole, penconazole, procymidone, tetraconazole, and vinclozolin) in 3 ml of water was described. The method used 3 μl of toluene as extraction solvent, 20 min extraction time with pH 4, stirring at 870 rpm, and no salt addition. The enrichment factors of this method were from 135 to 213. Limits of detection were in the range of 0.004-0.025 μg/l. The relative standard deviations (RSDs) at 0.1 and 5 μg/l of spiking levels were in the range 3-8%. Recoveries of six fungicides from farm water at a spiking level of 0.5 μg/l were between 90.7 and 97.6%. The method compared favorably with the traditional method in terms of the sample size, analysis time, and cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号