首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yeh RM  Xu J  Seeber G  Raymond KN 《Inorganic chemistry》2005,44(18):6228-6239
As an extension to a rational design for the formation of self-assembled coordination cages, the syntheses for very large M4L4 tetrahedra based on a hexadentate 3-fold symmetric ligand (1,3,5-tris(4'-(2' ',3' '-dihydroxybenzamido)phenyl)benzene (H6L2)) are described. Four tetrahedral M4L2(4) assemblies (M = Al(III), Ga(III), In(III), Ti(IV)), with cavity sizes of around 450 A3, have been characterized by elemental analysis, NMR spectroscopy, and high-resolution electrospray mass spectrometry. Differences in chiral resolution and dynamic behavior of host-guest interactions with previously reported tetrahedral M4L(N)6 and M4L1(4) architectures are highlighted for the ligands 1,5-bis(2',3'-dihydroxybenzamido)naphthalene (H4L(N)) and 1,3,5-tris(2',3'-dihydroxybenzamido)benzene (H6L1). An even larger 3-fold symmetric ligand, 1,3,5-tris(4'-(2' ',3' '-dihydroxybenzamido)-1',1' '-biphenyl)benzene (H6L3) has been prepared but, due to increased flexibility and deviation from the intended 3-fold symmetry, does not undergo self-assembly to form the M4L3(4) structure.  相似文献   

2.
Abe K  Matsufuji K  Ohba M  Okawa H 《Inorganic chemistry》2002,41(17):4461-4467
A phenol-based "end-off" compartmental ligand, 2-[N-[2-(dimethylamino)ethyl]iminomethyl]-6-[N,N-di(2-pyridylmethyl)aminomethyl]-4-methylphenol (HL), having a bidentate arm and a tridentate arm attached to the 2 and 6 positions of the phenolic ring, has afforded the following heterodinuclear M(a)(II)M(b)(II) complexes: [CuM(L)(AcO)(2)]ClO(4) (M = Mn (1), Fe (2), Co (3), Ni (4), Zn (5)), [ZnM(L)(AcO)(2)]ClO(4) (M = Co (6), Ni (7)), and [CuNi(L)(AcO)(NCS)(2)] (8). 1.MeOH (1'), 2.MeOH (2'), 3.MeOH (3'), 4.MeOH (4'), 5.MeOH (5'), and 7.MeOH (7') are isostructural and have a heterodinuclear core bridged by the phenolic oxygen atom of L(-) and two acetate groups. In 1'-5' the Cu(II) is bound to the bidentate arm and has a square-pyramidal geometry with one acetate oxygen at the apical site. The M(II) is bound to the tridentate arm and has a six-coordinate geometry together with two acetate oxygen atoms. In the case of 7' the Zn is bound to the bidentate arm and the Ni is bound to the tridentate arm. 8.2-PrOH (8') has a dinuclear core bridged by the phenolic oxygen atom of L(-) and one acetate group. The Cu bound to the bidentate arm has a square-pyramidal geometry with an isothiocyanate group at the apical site. The Ni bound to the tridentate arm has a six-coordinate geometry with further coordination of an isothiocyanate group. The site specificity of the metal ions is discussed together with the crystal structure of [Cu(4)(L)(2)(AcO)(3)](ClO(4))(3).H(2)O (9) prepared in this work.  相似文献   

3.
Four heterotrinuclear Re(IV)(2)M(II) compounds of general formula (NBu(4))(2)[{Re(IV)Br(4)(μ-ox)}(2)M(II)(Him)(2)] [NBu(4)(+) = tetra-n-butylammonium cation, ox = oxalate, Him = imidazole; M = Mn (1), Co (2), Ni (3), and Cu (4)] have been synthesized by using the novel mononuclear complex [Re(IV)Br(4)(ox)](2-) as a ligand toward divalent first-row transition metal ions in the presence of imidazole. Compounds 1-4 are isostructural complexes whose structure contains discrete trinuclear [{Re(IV)Br(4)(μ-ox)}(2)M(II)(Him)(2)](2-) anions and bulky NBu(4)(+) cations. The Re and M atoms are six-coordinated: four peripheral bromo and two oxalate-oxygens (at Re), and two cis-coordinated imidazole molecules and four oxygen atoms from two oxalate ligands (at M), build distorted octahedral surroundings. Two peripheral [ReBr(4)(ox)](2-) units act as bidentate ligands through the oxalate group toward the central [M(II)(Him)(2)] fragment affording the trinuclear entities. The values of the intramolecular Re···M separation are 5.62(1) (1), 5.51(1) (2), 5.46(1) (3), and 5.55(1) ? (4). Magnetic susceptibility measurements on polycrystalline samples of 1-4 in the temperature range of 1.9-300 K show the occurrence of intramolecular antiferro- [J = -1.1 cm(-1) (1)] and ferromagnetic interactions [J = +3.9 (2), +19.7 (3), and +14.4 cm(-1) (4)], the Hamiltonian being defined as H? = -J [S?(M)(S?(Re1) + S?(Re2))]. The larger spin delocalization on the oxalato bridge in 1-4 when compared to the trinuclear Re(IV)(2)M(II) complexes with chloro instead of bromo as peripheral ligands (1'-4') accounts for the strengthening of the magnetic interactions in 1-4 [J = -0.35 (1'), +14.2 (3'), and +7.7 cm(-1) (4')]. An incipient frequency dependence of the out-of-phase ac signals of 3 at very low temperatures is reminiscent of a system with slow relaxation of the magnetization, a phenomenon characteristic of single-molecule magnet behavior.  相似文献   

4.
Stroh C  Turek P  Rabu P  Ziessel R 《Inorganic chemistry》2001,40(21):5334-5342
Transition metal complexes of 2-[4'-(2,2':6',2' '-terpyridyl)]-(4,4,5,5-tetramethylimidazolinyl-3-oxide-1-oxyl) (terpy-NIT) and 2-[4'-(2,2':6',2' '-terpyridyl)]-(4,4,5,5-tetramethylimidazolinyl-1-oxyl) (terpy-IM) have been prepared. Whereas the pyridyl fragments of the free ligands are in an anti conformation, the complexes are obtained by coordination of two terpyridines in a syn conformation, forming a distorted octahedron around the metal center: [M(terpy-NIT)(2)](ClO(4))(2) (M = Ni(II) 1, Zn(II) 2, Cu(II) 3) and [M(terpy-IM)(2)](ClO(4))(2) (M = Ni(II) 4, Zn(II) 5). The ligands and their complexes have been characterized by FAB-MS, UV-vis, FT-IR spectroscopies, elemental analysis, and by EPR spectroscopy and susceptibility measurements. Single-crystal X-ray diffraction have been performed on the terpy-NIT ligand and on complexes 1, 4, and 5 giving following crystal data: terpy-NIT, monoclinic, P2(1)/c, Z = 4, a = 14.2186(5), b = 12.9129(6), c = 11.704(1) A, beta = 108.615(4) degrees; 1, orthorhombic, P(n a 2(1)), Z = 4, a = 23.6367(6), b = 8.7836(1), c = 24.2748(7) A; 4, monoclinic, P2(1), Z = 1, a = 8.738(1), b = 25.010(1), c = 11.704(1) A, beta = 102.849(3) degrees; 5, monoclinic, P2(1), Z = 1, a = 8.7463(2), b = 25.0833(5), c = 11.8168(3) A, beta = 102.757(3) degrees. For complexes 1 and 3, an antiferromagnetic behavior has been found and parametrized by considering a symmetric magnetic trimer, highlighting a strong intramolecular coupling between the metal and the radicals (average values 2J(M-NIT) = -19.6 K for M = Ni and -22.8 K for M = Cu). In the case of compound 4, an asymmetric magnetic trimer has been used to model the antiferromagnetic interactions (2J(Ni-IM1) = -13.0 K, 2J(Ni-IM2) = -5.6 K). The shape of the EPR spectra of complexes 2, 3, and 5 in solution indicates the intermediate exchange limit, of the order of a few mK, between the two nitroxide radicals through the pyridyl-metal-pyridyl fragment.  相似文献   

5.
Hou L  Li D  Shi WJ  Yin YG  Ng SW 《Inorganic chemistry》2005,44(22):7825-7832
Six mixed-valence Cu(I)Cu(II) compounds containing 4'-(4-pyridyl)-2,2':6',2' '-terpyridine (L1) or 4'-(2-pyridyl)-2,2':6',2' '-terpyridine (L2) were prepared under the hydrothermal and ambient conditions, and their crystal structures were determined by single-crystal X-ray diffraction. Selection of CuCl(2).2H(2)O or Cu(CH(3)COO)(2).H(2)O with the L1 ligand and NH(4)SCN, KI, or KBr under hydrothermal conditions afforded 1-dimensional mixed-valence Cu(I)Cu(II) compounds [Cu(2)(L1)(mu-1,1-SCN)(mu-Cl)Cl](n) (1), [Cu(2)(L1)(mu-I)(2)Cl](n) (2), [Cu(2)(L1)(mu-Br)(2)Br](n) (3), and [Cu(2)(L1)(mu-1,3-SCN)(2)(SCN)](n)(4), respectively. Compound 5, prepared by layering with CuSCN and L1, is a 2-dimensional bilayer structure. In compounds 1-5, the L1 ligand and X (X = Cl, Br, I, SCN) linked between monovalent and divalent copper atoms resulting in the formation of mixed-valence rectangular grid-type M(4)L(4) or M(6)L(6) building blocks, which were further linked by X (X = Cl, Br, I, SCN) to form 1- or 2-dimensional polymers. The sizes of M(4)L(4) units in 1-4 were fine-tuned by the sizes of X linkers. Reaction of Cu(CH(3)COO)(2).H(2)O with L2 and NH(4)SCN under hydrothermal conditions gave mixed-valence Cu(I)Cu(II) compound [Cu(2)(L2)(mu-1,3-SCN)(3)](n) (6). Unlike those in 1-5, the structure of 6 was constructed from thiocyanate groups and the pendant pyridine of L2 left uncoordinated. The temperature-dependent magnetic susceptibility studies on compounds 1 and 4 showed the presence of mixed-valence electronic structure.  相似文献   

6.
Zang S  Su Y  Li Y  Zhu H  Meng Q 《Inorganic chemistry》2006,45(7):2972-2978
Three 3D robust homochiral helical coordination polymers, [Cu(2,2',3,3'-H2odpa)(bpy)] (1), {[Ni4(2,2',3,3'-odpa)2(bpy)4(H2O)4].(H2O)16} (2), and {[Co4(2,2',3,3'-odpa)2(bpy)4(H2O)4].(H2O)14} (3), have been hydrothermally synthesized from a flexible ligand of 2,2',3,3'-odpda (2,2',3,3'-oxydiphthalic dianhydride). Compound 1 crystallized in space group P3(1)21 and has a rare chiral dense qzd 7.(5)9 topology that incorporates single helical substructures with the same accessibility, whereas compounds 2 and 3 crystallized in the space group C2 and possessed isostructural 3D chiral open frameworks based on the homochiral 2D sheets and 4,4'-bpy pillars. TGA and PXRD analyses show that the porous framework of 2 is stable after the removal of solvent water molecules. In contrast, 3 changed its structure to an amorphous one because of the simultaneous loss of solvent and coordination water molecules. 1 is nearly paramagnetic, whereas weak ferromagnetic interactions between M(II) (M = Ni, Co) ions have been found in 2 and 3.  相似文献   

7.
(1)H, (13)C and (15)N NMR studies of iron(II), ruthenium(II) and osmium(II) bis-chelated cationic complexes with 2,2':6',2″-terpyridine ([M(terpy)(2) ](2+) ; M = Fe, Ru, Os) were performed. Significant shielding of nitrogen-adjacent H(6) and deshielding of H(3'), H(4') protons were observed, both effects being mostly expressed for Fe(II) compounds. The metal-bonded nitrogens were shielded, this effect being much larger for the outer N(1), N(1″) than the inner N(1') atoms, and enhanced in the Fe(II) → Ru(II) → Os(II) series.  相似文献   

8.
The total syntheses of 1,2,7,8,1',2',7',8'-octahydro-psi,psi-carotene (1), 1,2,7,8-tetrahydro-psi,psi-carotene (2), 1,2,1',2'-tetradehydro-psi,psi-carotene (3), 1,2-dihydro-psi,psi-carotene (4), 1,2-dihydor-3,4-didehydro-psi,psi-carotene (5), and 1,2,1',2'-tetrahydro-3,4,3',4'-tetrahydro-psi,psi-carotene (6) are described. The properties of products and intermediates, including the three new apocarotenals 1,2,7,8-tetrahydro-12'-apo-psi-caroten-12'-al (20), 1,2-dihydro-8'-apo-pse-caroten-8'-al (25), and 1,2-dihydro-3,4-didehydro-8'-apo-psi-carotene-8'-al (32), are reported. A fragment ion at M68 on electron impact appears to be characteristic for carotenoids with a 1,2,7,8-tetrahydro end-group.  相似文献   

9.
Treatment of [Ce(Cp*)(2)I] or [U(Cp*)(2)I(py)] with 1 mol equivalent of bipy (Cp*=C(5)Me(5); bipy=2,2'-bipyridine) in THF gave the adducts [M(Cp*)(2)I(bipy)] (M=Ce (1 a), M=U (1 b)), which were transformed into [M(Cp*)(2)(bipy)] (M=Ce (2 a), M=U (2 b)) by Na(Hg) reduction. The crystal structures of 1 a and 1 b show, by comparing the U-N and Ce-N distances and the variations in the C-C and C-N bond lengths within the bidentate ligand, that the extent of donation of electron density into the LUMO of bipy is more important in the actinide than in the lanthanide compound. Reaction of [Ce(Cp*)(2)I] or [U(Cp*)(2)I(py)] with 1 mol equivalent of terpy (terpy=2,2':6',2'-terpyridine) in THF afforded the adducts [M(Cp*)(2)(terpy)]I (M=Ce (3 a), M=U (3 b)), which were reduced to the neutral complexes [M(Cp*)(2)(terpy)] (M=Ce (4 a), M=U (4 b)) by sodium amalgam. The complexes [M(Cp*)(2)(terpy)][M(Cp*)(2)I(2)] (M=Ce (5 a), M=U (5 b)) were prepared from a 2:1 mixture of [M(Cp*)(2)I] and terpy. The rapid and reversible electron-transfer reactions between 3 and 4 in solution were revealed by (1)H NMR spectroscopy. The spectrum of 5 b is identical to that of the 1:1 mixture of [U(Cp*)(2)I(py)] and 3 b, or [U(Cp*)(2)I(2)] and 4 b. The magnetic data for 3 and 4 are consistent with trivalent cerium and uranium species, with the formulation [M(III)(Cp*)(2)(terpy(*-))] for 4 a and 4 b, in which spins on the individual units are uncoupled at 300 K and antiferromagnetically coupled at low temperature. Comparison of the crystal structures of 3 b, 4 b, and 5 b with those of 3 a and the previously reported ytterbium complex [Yb(Cp*)(2)(terpy)] shows that the U-N distances are much shorter, by 0.2 A, than those expected from a purely ionic bonding model. This difference should reflect the presence of stronger electron transfer between the metal and the terpy ligand in the actinide compounds. This feature is also supported by the small but systematic structural variations within the terdentate ligands, which strongly suggest that the LUMO of terpy is more filled in the actinide than in the lanthanide complexes and that the canonical forms [U(IV)(Cp*)(2)(terpy(*-))]I and [U(IV)(Cp*)(2)(terpy(2-))] contribute significantly to the true structures of 3 b and 4 b, respectively. This assumption was confirmed by the reactions of complexes 3 and 4 with the H(.) and H(+) donor reagents Ph(3)SnH and NEt(3)HBPh(4), which led to clear differentiation of the cerium and uranium complexes. No reaction was observed between 3 a and Ph(3)SnH, while the uranium counterpart 3 b was transformed in pyridine into the uranium(IV) compound [U(Cp*)(2){NC(5)H(4)(py)(2)}]I (6), where NC(5)H(4)(py)(2) is the 2,6-dipyridyl(hydro-4-pyridyl) ligand. Complex 6 was further hydrogenated to [U(Cp*)(2){NC(5)H(8)(py)(2)}]I (7) by an excess of Ph(3)SnH in refluxing pyridine. Treatment of 4 a with NEt(3)HBPh(4) led to oxidation of the terpy(*-) ligand and formation of [Ce(Cp*)(2)(terpy)]BPh(4), whereas similar reaction with 4 b afforded [U(Cp*)(2){NC(5)H(4)(py)(2)}]BPh(4) (6'). The crystal structures of 6, 6' and 7 were determined.  相似文献   

10.
Sun SS  Lees AJ 《Inorganic chemistry》2001,40(13):3154-3160
A series of novel heterometallic square complexes with the general molecular formulas [fac-Br(CO)(3)Re[mu-(pyterpy)(2)M]](4)(PF(6))(8) and [(dppf)Pd[mu-(pyterpy)(2)Ru]](4)(PF(6))(8)(OTf(8) (4), where M = Fe (1), Ru (2), or Os (3), pyterpy is 4'-(4' "-pyridyl)-2,2':6',2' '-terpyridine, dppf = 1,1'-bis(diphenylphosphino)ferrocene and OTf is trifluoromethanesulfonate, were prepared by self-assembly between BrRe(CO)(5) or (dppf)Pd(H(2)O)(2)(OTf)(2) and (pyterpy)(2)M(PF(6))(2). The obtained NMR spectra, IR spectra, electrospray ionization mass spectra, and elemental analyses are all consistent with the proposed square structures incorporating terpyridyl metal complexes as bridging ligands. Multiple redox processes were observed in all square complexes. All four complexes display strong visible absorptions in the region 400-600 nm, which are assigned as metal (Fe, Ru, or Os)-to-ligand (pyterpy) charge transfer (MLCT) bands. Square 3 exhibits an additional weak band at 676 nm, which is assigned to an Os-based (3)MLCT band. For each complex, the bands centered between 279 and 377 nm are assigned as pyterpy-based pi-pi bands and the Re-based MLCT band. Square 3 is luminescent in room-temperature solution, while squares 1, 2, and 4 do not have any detectable luminescence under identical experimental conditions.  相似文献   

11.
A capillary gas chromatographic-mass spectrometric method for the simultaneous determination of stable isotopically labelled L-histidine (L-[3,3-2H2,1',3'-15N2]histidine, L-His-[M + 4]) and urocanic acid ([3-2H,1',3'-15N2]urocanic acid, UA-[M + 3]) in human plasma was developed using DL-[2,3,3,5'-2H4,2'-13C,1',3'-15N2]histidine (DL-His-[M + 7]) and [2,3,5'-2H3,2'-13C,1',3'-15N2]urocanic acid (UA-[M + 6]) as internal standards. L-Histidine and urocanic acid were derivatized to alpha N-(trifluoroacetyl)-imN-(ethoxycarbonyl)-L-histidine n-butyl ester and imN-(ethoxycarbonyl)urocanic acid n-butyl ester. Quantification was carried out by selected ion monitoring of the molecular ions of the respective derivatives of L-His-[M + 4], DL-His-[M + 7], UA-[M + 3] and UA-[M + 6]. The sensitivity, specificity, precision and accuracy of the method were demonstrated to be satisfactory for measuring plasma concentrations of L-His-[M + 4] and UA-[M + 3] following administration of trace amounts of L-His-[M + 4] to humans.  相似文献   

12.
Six new stilbenoids, a (bibenzyldihydrophenanthrene) ether designated phoyunnanin D (1), a bis(dihydrophenanthrene) ether designated phoyunnanin E (2), and four stilbenes designated phoyunbene A-D (3-6), were isolated from the air-dried whole plant of Pholidota yunnanensis ROLFE. The new compounds were identified as 7-[2-(3-hydroxyphenethyl)-4-hydroxy-6-methoxyphenoxy]-4-hydroxy-2-methoxy-9,10-dihydrophenanthrene (1), 1-[(9,10-dihydro-4-hydroxy-2-methoxy-7-phenanthrenyl)oxy]-4,7-dihydroxy-2-methoxy-9,10-dihydrophenanthrene (2), trans-3,3'-dihydroxy-2',4',5-trimethoxystilbene (3), trans-3,4'-dihydroxy-2',3',5-trimethoxystilbene (4), trans-3,3'-dihydroxy-2',5-dimethoxystilbene (5), and trans-3-hydroxy-2',3',5-trimethoxystilbene (6) based on spectroscopic evidence. Furthermore, the inhibitory effects of compounds 1-6 on nitric oxide production in a murine macrophage-like cell line (RAW 264.7) activated by lipopolysaccharide and interferon-gamma were examined.  相似文献   

13.
By using the neutral bidentate nitrogen-containing ligand, bis(3,5-diisopropyl-1-pyrazolyl)methane (L1' '), the copper(I) complexes [Cu(L1' ')2](CuCl2) (1CuCl2), [Cu(L1' ')2](ClO4) (1ClO4), [Cu(L1' ')]2(ClO4)2 (2ClO4), [Cu(L1' ')]2(BF4)2 (2BF4), [Cu(L1' ')(NCMe)](PF6) (3PF6), [Cu(L1' ')(PPh3)](ClO4) (4ClO4), [Cu(L1' ')(PPh3)](PF6) (4PF6), [{Cu(L1' ')(CO)}2(mu-ClO4)](ClO4) (5ClO4), and the copper(II) complexes [{Cu(L1' ')}2(mu-OH)2(mu-ClO4)2] (6), and [Cu(L1' ')Cl2] (7) were systematically synthesized and fully characterized by X-ray crystallography and by IR and 1H NMR spectroscopy. In the case of copper(II), ESR spectroscopy was also applied. In comparison with the related neutral tridentate ligand L1', bis-chelated copper(I) complexes and binuclear linear-coordinated copper(I) complexes are easy to obtain with L1' ', like 1CuCl2, 1ClO4, 2ClO4, and 2BF4. Importantly, stronger and bulkier ligands such as acetonitrile (3PF6) and especially triphenylphosphine (4ClO4 and 4PF6) generate three-coordinate structures with a trigonal-planar geometry. Surprisingly, for the smaller ligand carbon monoxide, a mononuclear three-coordinate structure is very unstable, leading to the formation of a binuclear complex (5ClO4) with one bridging perchlorate anion, such that the copper(I) centers are four-coordinate. The same tendency is observed for the copper(II) bis(mu-hydroxo) compounds 6, which is additionally bridged by two perchlorate anions. Both copper(II) complexes 6 and 7 were obtained by molecular O2 oxidation of the corresponding copper(I) complexes. A comparison of the new copper(I) triphenylphosphine complexes 4ClO4 and 4PF6 with corresponding species obtained with the related tridentate ligands L1' and L1 (8ClO4 and 9, respectively) reveals surprisingly small differences in their spectroscopic properties. Density functional theory (DFT) calculations are used to shed light on the differences in bonding in these compounds and the spectral assignments. Finally, the reactivity of the different bis(pyrazolyl)methane complexes obtained here toward PPh3, CO, and O2 is discussed.  相似文献   

14.
Phytochemical study on an EtOAc-soluble extract of the root bark of Erythrina mildbraedii resulted in the isolation of six prenylated flavonoids 1-6. Based on physicochemical and spectroscopic analyses, their structures were determined to be new natural products licoflavanone-4'-O-methyl ether (1), 2',7-dihydroxy-4'-methoxy-5'-(3-methylbut-2-enyl)isoflavone (2), and (3R)-2',7-dihydroxy-3'-(3-methylbut-2-enyl)-2',2'-dimethylpyrano[5',6' :4',5']isoflavan (3), along with three known compounds erythrinin B (4), abyssinin II (5), and parvisoflavone B (6). All the isolates, except for compound 4, inhibited PTP1B activity in vitro with IC(50) values ranging from 5.3 to 42.6 microM. This result further suggests that the prenyl group on the B ring of flavonoids plays an important role in suppressing the enzyme PTP1B.  相似文献   

15.
Cobalt(II) complexes of terpyridine bases [Co(L)?](ClO?)? (1-3), where L is 4'-phenyl-2,2':6',2'-terpyridine (ph-tpy in 1), 4'-(9-anthracenyl)-2,2':6',2'-terpyridine (an-tpy in 2) and 4'-(1- pyrenyl)-2,2':6',2'-terpyridine (py-tpy in 3), are prepared and their photo-induced DNA and protein cleavage activity and photocytotoxic property in HeLa cells studied. The 1?:?2 electrolytic and three-electron paramagnetic complexes show a visible band near 550 nm in DMF-Tris-HCl buffer. The complexes 1-3 show emission spectral bands at 355, 421 and 454 nm, respectively, when excited at 287, 368 and 335 nm. The quantum yield values for 1-3 in DMF-H?O (2?:?1 v/v) are 0.025, 0.060 and 0.28, respectively. The complexes are redox active in DMF-0.1 M TBAP. The Co(III)-Co(II) and Co(II)-Co(I) couples appear as quasi-reversible cyclic voltammetric responses near 0.2 and -0.7 V vs. SCE, respectively. Complexes 2 and 3 are avid binders to calf thymus DNA giving K(b) value of ~10? M?1. The complexes show chemical nuclease activity. Complexes 2 and 3 exhibit oxidative cleavage of pUC19 DNA in UV-A and visible light. The DNA photocleavage reaction of 3 at 365 nm shows formation of singlet oxygen and hydroxyl radical species, while only hydroxyl radical formation is evidenced in visible light. Complexes 2 and 3 show non-specific photo-induced bovine serum albumin protein cleavage activity at 365 nm. The an-tpy and py-tpy complexes exhibit significant photocytotoxicity in HeLa cervical cancer cells on exposure to visible light giving IC?? values of 24.2 and 7.6 μM, respectively. Live cell imaging study shows accumulation of the complexes in the cytosol of HeLa cancer cells.  相似文献   

16.
Treatment of (silox)3MCl (M = Mo, 1-Cl; W, 2-Cl; silox = (t)Bu3SiO) with PMe3 and Na/Hg led to formation of monomeric, d(3) phosphine adducts, (silox)3MPMe3 (M = Mo, 1-PMe3; W, 2-PMe3) via (silox)3ClMPMe3 (M = Mo, 1-ClPMe3; W, 2-ClPMe3). Structural studies show 1-PMe3 and 2-PMe3 to be highly distorted; calculations on full chemical models corroborate experimentally determined S = 1/2 ground states and their structural features. The compounds contain a bent M-P bond that is characteristic of significant sigma/pi-mixing. PMe3 may be thermally removed from 1-PMe3 in vacuo to produce (4)A2' (silox) 3Mo (1), which was derivatized with CO, NO, and 1/4 P4 to form (silox)3Mo (1-CO), (silox)3MoNO (1-NO), and (silox)3MoP (1-P), respectively. Calculations revealed (silox)3W (2') to have an S = 1/2 ground state, which may render it too reactive to be isolated. Treatment of 2-PMe3 with CO, NO, and 1/4 P4 formed (silox)3WCO (2-CO), (silox)3WNO (2-NO), and (silox)3WP (2-P), respectively. 2-CO and 2-NO are more conveniently prepared from Na/Hg reductions of 2-Cl in the presence of CO and NO, respectively. Calculations reveal subtle effects of nd(z2)/(n+1)s mixing in differentiating the chemistry of Mo and W and in rationalizing the generation of mononuclear species.  相似文献   

17.
Ferrocenyl terpyridine 3d metal complexes and their analogues, viz. [M(Fc-tpy)(2)](ClO(4))(2) (1-4), [Zn(Ph-tpy)(2)](ClO(4))(2) (5) and [Zn(Fc-dpa)(2)]X(2) (X = ClO(4), 6; PF(6), 6a), where M = Fe(II) in 1, Co(II) in 2, Cu(II) in 3 and Zn(II) in 4, Fc-tpy is 4'-ferrocenyl-2,2':6',2'-terpyridine, Ph-tpy is 4'-phenyl-2,2':6',2'-terpyridine and Fc-dpa is ferrocenyl-N,N-dipicolylmethanamine, are prepared and their DNA binding and photocleavage activity in visible light studied. Complexes 2, 4, 5 and 6a that are structurally characterized by X-ray crystallography show distorted octahedral geometry with the terpyridyl ligands binding to the metal in a meridional fashion, with Fc-dpa in 6a showing a facial binding mode. The Fc-tpy complexes display a charge transfer band in the visible region. The ferrocenyl (Fc) complexes show a quasi-reversible Fc(+)-Fc redox couple within 0.48 to 0.66 V vs. SCE in DMF-0.1 M TBAP. The DNA binding constants of the complexes are ~10(4) M(-1). Thermal denaturation and viscometric data suggest DNA surface binding through electrostatic interaction by the positively charged complexes. Barring the Cu(II) complex 3, the complexes do not show any chemical nuclease activity in the presence of glutathione. Complexes 1-4 exhibit significant plasmid DNA photocleavage activity in visible light via a photoredox pathway. Complex 5, without the Fc moiety, does not show any DNA photocleavage activity. The Zn(II) complex 4 shows a significant PDT effect in HeLa cancer cells giving an IC(50) value of 7.5 μM in visible light, while being less toxic in the dark (IC(50) = 49 μM).  相似文献   

18.
Eupatilin (5,7-dihydroxy-3',4',6-trimethoxy flavone) is an active ingredient of an ethanol extract of Artemisia asiatica (DA-9601) that is used in the treatment of gastritis. In vitro and in vivo metabolism of eupatilin in the rats has been studied by LC-electrospray mass spectrometry. Rat liver microsomal incubation of eupatilin in the presence of NADPH and UDPGA resulted in the formation of four metabolites (M1-M4). M1, M2, M3 and M4 were tentatively identified as 3'- or 4'-O-demethyl-eupatilin glucuronide, eupatilin glucuronide, 6-O-demethyleupatilin and 3'- or 4'-O-demethyl-eupatilin, respectively. Those metabolites from in vitro study were also characterized in bile, plasma or urine samples after an intravenous administration of eupatilin to rats. In rat bile, plasma and urine samples, eupatilin glucuronide (M2) was a major metabolite, whereas M3, M4 and M4 glucuronide (M1) were the minor metabolites.  相似文献   

19.
While developing a liquid chromatography/tandem mass spectrometry method for the analysis of the flavonoid quercitin, it was observed that quercetin (3,3',4',5,7-pentahydroxyflavone) exhibited clustering in both the positive and negative ion mode. Two series of positive ion clusters were observed; the first series corresponds to singly charged [2M + Na](+) at m/z 627.2 to [13M + Na](+) at m/z 3947.5, while the second series corresponds to doubly charged [7M + 2Na](2+) at m/z 1080.4 to [25M + 2Na](2+) at m/z 3798.5. In the negative ion mode, the behavior of quercetin parallels that of apigenin (4',5,7-trihydroxyflavone) in that [M + NO(3)](-), [2M + NO(3)](-), and [3M + NO(3)](-) were observed at m/z 364.1, 666.0, and 968.9, respectively; in addition, quercitin clusters with chloride ions ([2M + Cl](-) at m/z 638.9 and [3M + Cl](-) at m/z 940. 9) were observed. The results of tandem mass spectrometric examination of several cluster ions are reported.  相似文献   

20.
As an extension of prior studies involving the linear quaterpyridine ligand, 5,5'-dimethyl-2,2':5',5':2',2'-quaterpyridine 1, the synthesis of the related expanded quaterpyridine derivatives 2 and 3 incorporating dimethoxy-substituted 1,4-phenylene and tetramethoxy-substituted 4,4'-biphenylene bridges between pairs of 2,2'-bipyridyl groups has been carried out via double-Suzuki coupling reactions between 5-bromo-5'-methyl-2'-bipyridine and the appropriate di-pinacol-diboronic esters using microwave heating. Reaction of 2 and 3 with selected Fe(II) or Ni(II) salts yields a mixture of both [M(2)L(3)](4+) triple helicates and [M(4)L(6)](8+) tetrahedra, in particular cases the ratio of the products formed was shown to be dependent on the reaction conditions; the respective products are all sufficiently inert to allow their chromatographic separation and isolation. Longer reaction times and higher concentrations were found to favour tetrahedron formation. The X-ray structures of solvated [Ni(2)(2)(3)](PF(6))(4), [(PF(6)) ? Fe(4)(2)(6)](PF(6))(7), [Fe(4)(3)(6)](PF(6))(8) and [Ni(4)(3)(6)](PF(6))(8) have been determined, while the structure of the parent Fe(II) cage in the series, [(PF(6)) ? Fe(4)(1)(6)](PF(6))(7), was reported previously. The internal volumes of the Fe(II) tetrahedral cages have been calculated and increase from 102 ?(3) for [Fe(4)(1)(6)](8+) to 227 ?(3) for [Fe(4)(2)(6)](8+) to 417 ?(3) for [Fe(4)(3)(6)](8+) and to an impressive 839 ?(3) for [Ni(4)(3)(6)](8+). The corresponding void volume in the triple helicate [Ni(2)(2)(3)](4+) is 29 ?(3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号