首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We extend the traveling salesman problem with pickup and delivery and LIFO loading (TSPPDL) by considering two additional factors, namely the use of multiple vehicles and a limitation on the total distance that a vehicle can travel; both of these factors occur commonly in practice. We call the resultant problem the multiple pickup and delivery traveling salesman problem with LIFO loading and distance constraints (MTSPPD-LD). This paper presents a thorough preliminary investigation of the MTSPPD-LD. We propose six new neighborhood operators for the problem that can be used in search heuristics or meta-heuristics. We also devise a two-stage approach for solving the problem, where the first stage focuses on minimizing the number of vehicles required and the second stage minimizes the total travel distance. We consider two possible approaches for the first stage (simulated annealing and ejection pool) and two for the second stage (variable neighborhood search and probabilistic tabu search). Our computational results serve as benchmarks for future researchers on the problem.  相似文献   

2.
The feasible solutions of the traveling salesman problem with pickup and delivery (TSPPD) are commonly represented by vertex lists. However, when the TSPPD is required to follow a policy that loading and unloading operations must be performed in a last-in-first-out (LIFO) manner, we show that its feasible solutions can be represented by trees. Consequently, we develop a novel variable neighborhood search (VNS) heuristic for the TSPPD with last-in-first-out loading (TSPPDL) involving several search operators based on the tree data structure. Extensive experiments suggest that our VNS heuristic is superior to the current best heuristics for the TSPPDL in terms of solution quality, while requiring no more computing time as the size of the problem increases.  相似文献   

3.
《Optimization》2012,61(5):691-704
In 1972 Christofides introduced a lower bound for the Traveling Salesman Problem (TSP). The bound is based on solving repeatedly a Linear Assignment Problem. We relate the bound to the Complete Cycle Problem; as a consequence the correctness of the bound is easier to prove.

Further we give improvements for the bound in the symmetric case and we deal with the influence of the triangle equation together with the identification of non-optimal edges for the TSP. The improvements are illustrated by examples and computational results for large problems.  相似文献   

4.
We introduce subclasses of the traveling salesman problem (TSP) and analyze the behaviour of heuristics on them. We derive bounds for the performance of the algorithms.  相似文献   

5.
A number of heuristics for the traveling salesman problem (TSP) rely on the assumption that the triangle inequality (TI) is satisfied. When TI does not hold, the paper proposes a transformation such that for the transformed problem the TI holds. Consequently, the bounds obtained for heuristics are valid with appropriate modification. Moreover, for a TSP satisfying TI the same transformation strengthens such bounds. The transformation essentially maps the problem into one that is minimal with respect to the property that TI holds. For the symmetric TSP the transformation is particularly simple. For an application of the transformation in the asymmetric case we need the dual solution of an assignment problem.  相似文献   

6.
Christofides [1] proposes a heuristic for the traveling salesman problem that runs in polynomial time. He shows that when the graphG = (V, E) is complete and the distance matrix defines a function onV × V that is metric, then the length of the Hamiltonian cycle produced by the heuristic is always smaller than 3/2 times the length of an optimal Hamiltonian cycle. The purpose of this note is to refine Christofides' worst-case analysis by providing a tight bound for everyn 3, wheren is the number of vertices of the graph. We also show that these bounds are still tight when the metric is restricted to rectilinear distances, or to Euclidean distances for alln 6.This work was supported, in part, by NSF Grant ENG 75-00568 to Cornell University. This work was done when the authors were affiliated with the Center for Operations Research and Econometrics, University of Louvain, Belgium.  相似文献   

7.
The Traveling Salesman Problem with Pickup and Delivery (TSPPD) is defined on a graph containing pickup and delivery vertices between which there exists a one-to-one relationship. The problem consists of determining a minimum cost tour such that each pickup vertex is visited before its corresponding delivery vertex. In this paper, the TSPPD is modeled as an integer linear program and its polyhedral structure is analyzed. In particular, the dimension of the TSPPD polytope is determined and several valid inequalities, some of which are facet defining, are introduced. Separation procedures and a branch-and-cut algorithm are developed. Computational results show that the algorithm is capable of solving to optimality instances involving up to 35 pickup and delivery requests, thus more than doubling the previous record of 15.   相似文献   

8.
We consider the problem of determining whether two traveling salesman tours correspond to non-adjacent vertices of the convex polytope associated with the traveling salesman problem. This problem is shown to be NP-Complete for both the symmetric and nonsymmetric traveling salesman problem. Several implications are discussed.This Research was supported by NSF Grant GK-420488, the U.S. Army Research Office-Durham under Grant DAHC04-75-G0192, and an IBM Fellowship.  相似文献   

9.
The classic traveling salesman problem is characterized in terms of continuous flows on a specially constructed non-conservative network, in 2n – 1 linear constraints and a cardinality constraint. It is shown that every solution to the network problem is a hamiltonian circuit.  相似文献   

10.
The Graphical Traveling Salesman Polyhedron (GTSP) has been proposed by Naddef and Rinaldi to be viewed as a relaxation of the Symmetric Traveling Salesman Polytope (STSP). It has also been employed by Applegate, Bixby, Chvátal, and Cook for solving the latter to optimality by the branch-and-cut method. There is a close natural connection between the two polyhedra. Until now, it was not known whether there are facets in TT-form of the GTSP polyhedron which are not facets of the STSP polytope as well. In this paper we give an affirmative answer to this question for n ≥ 9. We provide a general method for proving the existence of such facets, at the core of which lies the construction of a continuous curve on a polyhedron. This curve starts in a vertex, walks along edges, and ends in a vertex not adjacent to the starting vertex. Thus there must have been a third vertex on the way.   相似文献   

11.
Given a graph and a length function defined on its edge-set, the Traveling Salesman Problem can be described as the problem of finding a family of edges (an edge may be chosen several times) which forms a spanning Eulerian subgraph of minimum length. In this paper we characterize those graphs for which the convex hull of all solutions is given by the nonnegativity constraints and the classical cut constraints. This characterization is given in terms of excluded minors. A constructive characterization is also given which uses a small number of basic graphs.  相似文献   

12.
We describe an algorithm for the asymmetric traveling salesman problem (TSP) using a new, restricted Lagrangean relaxation based on the assignment problem (AP). The Lagrange multipliers are constrained so as to guarantee the continued optimality of the initial AP solution, thus eliminating the need for repeatedly solving AP in the process of computing multipliers. We give several polynomially bounded procedures for generating valid inequalities and taking them into the Lagrangean function with a positive multiplier without violating the constraints, so as to strengthen the current lower bound. Upper bounds are generated by a fast tour-building heuristic. When the bound-strengthening techniques are exhausted without matching the upper with the lower bound, we branch by using two different rules, according to the situation: the usual subtour breaking disjunction, and a new disjunction based on conditional bounds. We discuss computational experience on 120 randomly generated asymmetric TSP's with up to 325 cities, the maximum time used for any single problem being 82 seconds. This is a considerable improvement upon earlier methods. Though the algorithm discussed here is for the asymmetric TSP, the approach can be adapted to the symmetric TSP by using the 2-matching problem instead of AP.Research supported by the National Science Foundation through grant no. MCS76-12026 A02 and the U.S. Office of Naval Research through contract no. N0014-75-C-0621 NR 047-048.  相似文献   

13.
The Traveling Salesman Problem with Pickup and Delivery seeks a minimum cost path with pickups preceding deliveries. It is important in on-demand last-mile logistics, such as ride sharing and meal delivery. We examine the use of low-width Decision Diagrams in a branch-and-bound with and without Assignment Problem inference duals as a primal heuristic for finding good solutions within strict time budgets. We show these diagrams can be more effective than similarly structured hybrid Constraint Programming techniques for real-time decision making.  相似文献   

14.
Annals of Operations Research - This article addresses the one-commodity pickup and delivery traveling salesman problem (1-PDTSP), which is a generalization of the well-known traveling salesman...  相似文献   

15.
Given a graphG = (N, E) and a length functionl: E , the Graphical Traveling Salesman Problem is that of finding a minimum length cycle goingat least once through each node ofG. This formulation has advantages over the traditional formulation where each node must be visited exactly once. We give some facet inducing inequalities of the convex hull of the solutions to that problem. In particular, the so-called comb inequalities of Grötschel and Padberg are generalized. Some related integer polyhedra are also investigated. Finally, an efficient algorithm is given whenG is a series-parallel graph.Work was supported in part by NSF grant ECS-8205425.  相似文献   

16.
The paper extends the branch and bound algorithm of Little, Murty, Sweeney, and Karel to the traveling salesman problem with pickup and delivery customers, where each pickup customer is required to be visited before its associated delivery customer. The problems considered include single and multiple vehicle cases as well as infinite and finite capacity cases. Computational results are reported.  相似文献   

17.
This paper considers the vehicle routing problem with pickups and deliveries (VRPPD) where the same customer may require both a delivery and a pickup. This is the case, for instance, of breweries that deliver beer or mineral water bottles to a set of customers and collect empty bottles from the same customers. It is possible to relax the customary practice of performing a pickup when delivering at a customer, and postpone the pickup until the vehicle has sufficient free capacity. In the case of breweries, these solutions will often consist of routes in which bottles are first delivered until the vehicle is partly unloaded, then both pickup and delivery are performed at the remaining customers, and finally empty bottles are picked up from the first visited customers. These customers are revisited in reverse order, thus giving rise to lasso shaped solutions. Another possibility is to relax the traditional problem even more and allow customers to be visited twice either in two different routes or at different times on the same route, giving rise to a general solution. This article develops a tabu search algorithm capable of producing lasso solutions. A general solution can be reached by first duplicating each customer and generating a Hamiltonian solution on the extended set of customers. Test results show that while general solutions outperform other solution shapes in term of cost, their computation can be time consuming. The best lasso solution generated within a given time limit is generally better than the best general solution produced with the same computing effort.  相似文献   

18.
Genetic algorithms for the traveling salesman problem   总被引:2,自引:0,他引:2  
This paper is a survey of genetic algorithms for the traveling salesman problem. Genetic algorithms are randomized search techniques that simulate some of the processes observed in natural evolution. In this paper, a simple genetic algorithm is introduced, and various extensions are presented to solve the traveling salesman problem. Computational results are also reported for both random and classical problems taken from the operations research literature.  相似文献   

19.
The Traveling Tournament Problem (TTP) is a combinatorial problem that combines features from the traveling salesman problem and the tournament scheduling problem. We propose a family of tabu search solvers for the solution of TTP that make use of complex combination of many neighborhood structures. The different neighborhoods have been thoroughly analyzed and experimentally compared. We evaluate the solvers on three sets of publicly available benchmarks and we show a comparison of their outcomes with previous results presented in the literature. The results show that our algorithm is competitive with those in the literature.  相似文献   

20.
《Optimization》2012,61(4):357-367
The 2-Peripatetic Salesman Problem (2-PSP) minimizes the total length of 2 edge-disjoint Hamil-tonian cycles. This type of problems arises in designing communication or computer networks, or whenever one aims to increase network reliability using disjoint tours. The NP-hardness of the 2-PSP is shown. Lower bound values are obtained by generalizing the 1-tree approach for the TSP to a 2 edge-disjoint 1-trees approach for the 2-PSP. One can construct 2 edge-disjoint 1-trees using a greedy algorithm, into which a partitioning procedure is incorporated that runs O(n 2 log n) time. Upper bound solutions are obtained by two heuristics based on a lower bound solution and by a modified Savings heuristic for problems up to 140 cities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号