首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conditions for the preparation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) 4-methylphthalates were investigated and their composition, solubility in water at 295 K and magnetic moments were determined. IR spectra and powder diffraction patterns of the complexes prepared with molar ratio of metal to organic ligand of 1.0:1.0 and general formula: M [ CH3C6H3(CO2)2nH2o (n=1-3) were recorded and their decomposition in air were studied. During heating the hydrated complexes are dehydrated in one (Mn, Co, Ni, Zn, Cd) or two steps (Cu) and next the anhydrous complexes decompose to oxides directly (Cu, Zn), with intermediate formation of carbonates (Mn, Cd), oxocarbonates (Ni) or carbonate and free metal (Co). The carboxylate groups in the complexes studied are mono- and bidentate (Co, Ni), bidentate chelating and bridging (Zn) or bidentate chelating (Mn, Cu, Cd). The magnetic moments for paramagnetic complexes of Mn(II), Co(II), Ni(II) and Cu(II) attain values 5.92, 5.05, 3.36 and 1.96 M.B., respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Summary The 4-hydroxyphenylthiocarboxyhydrazide (Hoth) ligand has been characterized by i.r.,1H and13C spectral studies. Its metal complexes with FeII, CoII,III, NiII, CuII and ZnII have been prepared and characterized on the basis of elemental analyses, molar conductance, magnetic susceptibility. Mössbauer, visible, e.s.r., i.r.,1H and13C n.m.r. spectral studies. The bonding and stereochemistry of the complexes are discussed. Hoth and its CuII complexes have been screened towards bacteria, viruses and fungi.  相似文献   

3.
The present work describes the preparation and characterization of some metal ion complexes derived from 4-formylpyridine-4 N-(2-pyridyl)thiosemicarbazone (HFPTS). The complexes have the formula; [Cd(HFPTS)2H2O]Cl2, [CoCl2(HPTS)]·H2O, [Cu2Cl4(HPTS)]·H2O, [Fe (HPTS)2Cl2]Cl·3H2O, [Hg(HPTS)Cl2]·4H2O, [Mn(HPTS)Cl2]·5H2O, [Ni(HPTS)Cl2]·2H2O, [UO2(FPTS)2(H2O)]·3H2O. The complexes were characterized by elemental analysis, spectral (IR, 1H-NMR and UV–Vis), thermal and magnetic moment measurements. The neutral bidentate coordination mode is major for the most investigated complexes. A mononegative bidentate for UO2(II), and neutral tridentate for Cu(II). The tetrahedral arrangement is proposed for most investigated complexes. The biological investigation displays the toxic activity of Hg(II) and UO2(II) complexes, whereas the ligand displays the lowest inhibition activity toward the most investigated microorganisms.  相似文献   

4.
Complexes of CrIII, MnII, FeIII, CoII, NiII and CuII containing a macrocyclic pentadentate nitrogen–sulphur donor ligand have been prepared via reaction of a pentadentate ligand (N3S2) with transition metal ions. The N3S2 ligand was prepared by [1 + 1] condensation of 2,6-diacetylpyridine with 1,2-di(o-aminophenylthio(ethane. The structures of the complexes have been elucidated by elemental analyses, molar conductance, magnetic susceptibility measurements, i.r., electronic and e.p.r. spectral studies. The complexes are of the high spin type and are six-coordinate.  相似文献   

5.
De Robertis A  Bellomo A  De Marco D 《Talanta》1976,23(10):732-734
A study is reported of the formation of Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Ag(I) and Cd(II) hexacyanocobaltates. The results show that the precipitates form by reaction of the metal ions with KCo(CN)(6)(2-) ion-pairs in 1:1 ratio, followed by solid phase transformations.  相似文献   

6.
Summary The ON–NO donor Schiff base,N,N'-bis(benzoin)benzidine forms mono-, di- and tetra-nuclear complexes with metal cations. The cobalt(II) complex is a blue monomei of tetrahedral configuration. The nickel(II) and manganese(II) complexes are dimers and octahedral. A tetranuclear square planar chloro-bridged structure is proposed for the copper(II) complex. A dimeric pentacoordinated square pyramidal configuration is assigned to zinc(II) and a dinuclear tetrahedral stereochemistry is suggested for the cadmium(II) and mercury(II) complexes on the basis of analytical, conductance, magnetic susceptibility, molecular weight, i.r., electronic, d.t.g. and d.t.a. data.  相似文献   

7.
Summary Complexes of CoII, NiII, CuII, ZnII, CdII, HgII and UO 2 II with benzil bis(4-phenylthiosemicarbazone), H2BPT, have been synthesized and their structures assigned based on elemental analysis, molar conductivity, magnetic susceptibility and spectroscopic measurements. The i.r. spectra suggest that the ligand behaves as a binegative quadridentate (NSSN) (CoII, CuII, HgII and UO 2 II complexes) or as a binegative quadridentate-neutral bidentate chelating agent (NiII, ZnII and CdII complexes). Octahedral structures for the CoII and NiII complexes and square-planar structure for the CuII complex are suggested on the basis of magnetic and spectral evidence. The crystal field parameters (Dq, B and B) for the CoII complex are calculated and agree fairly well with the values reported for known octahedral complexes. The ligand can be used for the microdetermination of NiII ions of concentration in the 0.4–6×10–4 mol l–1 range and the apparent formation constant for the species generated in solution has also been calculated.  相似文献   

8.
A new ligand, 2‐aminonicotinaldehyde N‐methyl thiosemicarbazone (ANMTSC) and its metal complexes [Co(II) ( 1 ); Ni(II) ( 2 ); Cu(II) ( 3 ); Zn(II) ( 4 ); Cd(II) ( 5 ) or Hg(II) ( 6 )] were synthesized. The compounds were characterized by analytical methods and various spectroscopic (infrared, magnetic, thermal, 1H, 13C NMR, electronic and ESR) tools. The structure of ANMTSC ligand was confirmed by single crystal X‐ray diffraction study. The spectral data of metal complexes indicate that the ligand acts as mononegative, bidentate coordination through imine nitrogen (N) and thiocarbonyl sulphur (S?) atoms. The proposed geometries for complexes were octahedral ( 1 – 2 ), distorted octahedral ( 3 ) and tetrahedral ( 4 – 6 ). Computational details of theoretical calculations (DFT) of complexes have been discussed. The compounds were subjected to antimicrobial, antioxidant, antidiabetic, anticancer, ROS, studies and EGFR targeting molecular docking analysis. Complex 5 has shown excellent antibacterial activity and the complexes 2 and 5 have shown good antifungal activity. The complexes 1 and 4 displayed good antioxidant property with IC50 values of 11.17 ± 1.92 μM and 10.79 ± 1.85 μM, respectively compared to standard. In addition, in vitro anticancer activity of the compounds was investigated against HeLa, MCF‐7, A549, IMR‐32 and HEK 293 cell lines. Among all the compounds, complex 4 was more effective against HeLa (IC50 = 10.28 ± 0.69 μM), MCF‐7 (IC50 = 9.80 ± 0.83 μM), A549 (IC50 = 11.08 ± 0.57 μM) and IMR‐32 (10.41 ± 0.60 μM) exhibited superior anticancer activity [IC50 = 9.80 ± 0.83 ( 4 ) and 9.91 ± 0.37 μM ( 1 )] against MCF‐7 compared with other complexes.  相似文献   

9.
Summary N-benzamidosalicylaldimine (H2L) complexes of CuII, NiII, CoII, FeII, MnII. VOIV and TiOIV have been prepared. The ligand probably coordinates to the metal from the hydroxyl, carbonyl and imino groups.  相似文献   

10.
A new heterocyclic compound N-(5-benzoyl-2-oxo-4-phenyl-2H-pyrimidin-1-yl)-oxalamic acid has been synthesized from N-amino pyrimidine-2-one and oxalylchloride. Bis-chelate complexes of the ligand were prepared from acetate/chloride salts of Cu(II), Co(II), Mn(II), Ni(II), Zn(II), Cd(II), and Pd(II) in methanol. The structures of the ligand and its metal complexes were characterized by microanalyses, IR, AAS, NMR, API-ES, UV-Vis spectroscopy, magnetic susceptibility, and thermogravimetric analyses. An octahedral geometry has been suggested for all the complexes, except for Pd(II) complex, in which the metal center is square planar. Each ligand binds using C(2)=O, HN, and carboxylate. The cyclic voltammograms of the ligand and the complexes are also discussed. The new synthesized compounds were evaluated for antimicrobial activities against Gram-positive, Gram-negative bacteria and fungi using the microdilution procedure. The Cu(II) complex displayed selective and effective antibacterial activity against one Gram-positive spore-forming bacterium (Bacillus cereus ATCC 7064), two Gram-positive bacteria (Staphylococcus aureus ATCC 6538 and S. aureus ATCC 25923) at 40–80 µg mL?1, but poor activity against Candida species. The Cu(II) complex might be a new antibacterial agent against Gram-positive bacteria.  相似文献   

11.
The coordination chemistry of a rigid periodinated ligand, 2,3,5,6-tetraiodo-1,4-benzenedicarboxylic acid (H2BDC-I4), with a series of transition metal ions has been explored to afford five new coordination polymers {[M(BDC-I4)(MeOH)4](H2BDC-I4)(MeOH)2} n (M?=?ZnII for 1, CdII for 2, CoII for 3 and MnII for 4) and {[Mn(BDC-I4)(MeOH)4](DMF)} n (5). All these complexes have been characterized by elemental analysis, IR spectroscopy, thermogravimetric (TG) analysis, and X-ray crystallography. Single-crystal X-ray diffraction reveals that complexes 1?C4 are isostructural and have a one-dimensional chain structure. Upon the addition of the solvent DMF, the infinite linear chain array in 4 is converted to a 1-D wave-like chain motif in 5 with a different space group ( $ P\overline{1} $ for 4 and P21/c for 5). The difference between structures 1?C4 and 5 can be attributed to the coordination mode of carboxylate changing from trans to cis fashion. The ZnII and CdII complexes 1 and 2 display similar emissions in the solid state, which essentially are intraligand transitions.  相似文献   

12.
The rawpH-data, obtained from the potentiometric titrations of the titled ligands with NaOH in 75% (v/v) dioxane-water mixture performed at 20, 30 and 40°C at constant ionic strength (=0.1M-NaClO4), have been adequately corrected for dilution, and solvent effects in order to evaluate thermodynamic dissociation constants. Variance of the latter as a function of temperature has also been accounted for. The differing magnitudes of thermodynamic dissociation constants of the titled ligands have been explained on the basis of the non coplanar orientation of the phenyl ring in the ligands and a comparison has been made with those of unsubstituted benzoylacetone, dibenzoylmethane and acetylacetone.Following similar technique, thermodynamic stepwise and overall formation constants of the titled metal-ligand systems have been obtained and the results correlated with ligand basicity inverse metal crystal radii and second potentials of metals. Decrease in the free enthalpy (–G) of complexation reaction has also been evaluated.
Untersuchung der Gleichgewichte von Mn(II), Mg(II), Ca(II), Sr(II) und Ba(II) mit p-Fluor-, p.-Chlor-, p-Brom-, p-Methyl-benzoylaceton und 1-(4-Fluorphenyl)-1,3-pentanedion
Zusammenfassung Aus der potenitometrischen Titration der Titelverbindungen mit NaOH in 75 (v/v) Dioxan—Wasser bei, 20, 30 und 40°C bei konstanter Ionenstärke (=0,1M-NaClO4) wurden die thermodynamischen Dissoziationskonstanten ermittelt. Verdünnungs-, Lösungsmittel-und Temperatureffekte wurden berücksichtigt. Die unterschiedlichen Dissoziationskonstanten werden mit der Nichtplanarität des Phenylrings in den Liganden erklärt. Außerdem wurden die Komplexbildungskonstanten bestimmt; sie sind in die Diskussion miteinbezogen.
  相似文献   

13.
Five new tetrametallic supramolecules of the motif [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) and three new trimetallic light absorbers [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) (TL = bpy = 2,2'-bipyridine or phen = 1,10-phenanthroline; M = Ru(II) or Os(II); BL = dpp = 2,3-bis(2-pyridyl)pyrazine, dpq = 2,3-bis(2-pyridyl)quinoxaline, or bpm = 2,2'-bipyrimidine) were synthesized and their redox, spectroscopic, and photophysical properties investigated. The tetrametallic complexes couple a Pt(II)-based reactive metal center to Ru and/or Os light absorbers through two different polyazine BL to provide structural diversity and interesting resultant properties. The redox potential of the M(II/III) couple is modulated by M variation, with the terminal Ru(II/III) occurring at 1.58-1.61 V and terminal Os(II/III) couples at 1.07-1.18 V versus Ag/AgCl. [{(TL)(2)M(dpp)}(2)Ru(BL)](PF(6))(6) display terminal M(dπ)-based highest occupied molecular orbitals (HOMOs) with the dpp(π*)-based lowest unoccupied molecular orbital (LUMO) energy relatively unaffected by the nature of BL. The coupling of Pt to the BL results in orbital inversion with localization of the LUMO on the remote BL in the tetrametallic complexes, providing a lowest energy charge separated (CS) state with an oxidized terminal Ru or Os and spatially separated reduced BL. The complexes [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) and [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) efficiently absorb light throughout the UV and visible regions with intense metal-to-ligand charge transfer (MLCT) transitions in the visible at about 540 nm (M = Ru) and 560 nm (M = Os) (ε ≈ 33,000-42,000 M(-1) cm(-1)) and direct excitation to the spin-forbidden (3)MLCT excited state in the Os complexes about 720 nm. All the trimetallic and tetrametallic Ru-based supramolecular systems emit from the terminal Ru(dπ)→dpp(π*) (3)MLCT state, λ(max)(em) ≈ 750 nm. The tetrametallic systems display complex excited state dynamics with quenching of the (3)MLCT emission at room temperature to populate the lowest-lying (3)CS state population of the emissive (3)MLCT state.  相似文献   

14.
15.
New complexes of MnII, CoII, NiII, CuII, and CdII with bis(acetophenone) ethylenediamine and 5-chlorosalicylideneaniline or 5-bromosalicylideneaniline have been prepared and characterized on the basis of elemental analyses, thermogravimetric analyses, magnetic measurements, electronic and i.r. spectra. The antimicrobial activities of the complexes, ligands, control (dimethyl formamide) and metal salts were tested against Salmonella typhi (bacteria), Saccharomyces cerevisae (yeast), and two fungal species Lasiodiplodia theobromae and Fusarium oxysporum. The results are discussed.  相似文献   

16.
Novel hexachlorocyclodiphosph(V)azane of sulfaguanidine, H(4)L, l,3-[N'-amidino-sulfanilamide]-2,2,2,4,4,4-hexachlorocyclodiphosph(V)azane was prepared and its coordination behaviour towards the transition metal ions Fe(III), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and UO(2)(II) was studied. The structures of the isolated products are proposed based on elemental analyses, IR, UV-vis, (1)H NMR, mass spectra, reflectance, magnetic susceptibility measurements and thermogravimetric analysis (TGA). The hyperfine interactions in the isolated complex compounds were studied using 14.4keV gamma-ray from radioactive (57)Co (M?ssbauer spectroscopy). The data show that the ligand are coordinated to the metal ions via the sulfonamide O and deprotonated NH atoms in an octahedral manner. The H(4)L ligand forms complexes of the general formulae [(MX(z))(2)(H(2)L)H(2)O)(n)] and [(FeSO(4))(2) (H(4)L) (H(2)O)(4)], where X=NO(3) in case of UO(2)(II) and Cl in case of Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II). The molar conductance data show that the complexes are non-electrolytes. The thermal behaviour of the complexes was studied and different thermodynamic parameters were calculated using Coats-Redfern method. Most of the prepared complexes showed high bactericidal activity and some of the complexes show more activity compared with the ligand and standards.  相似文献   

17.
Varying coordination modes of the Schiff base ligand H2L [5-methyl-1-H-pyrazole-3-carboxylic acid (1-pyridin-2-yl-ethylidene)-hydrazide] towards different metal centers are reported with the syntheses and characterization of four mononuclear Mn(II), Co(II), Cd(II) and Zn(II) complexes, [Mn(H2L)(H2O)2](ClO4)2(MeOH) (1), [Co(H2L)(NCS)2] (2), [Cd(H2L)(H2O)2](ClO4)2 (3) and [Zn(H2L)(H2O)2](ClO4)2 (4), and a binuclear Cu(II) complex, [Cu2(L)2](ClO4)2 (5). In the complexes 1-4 the neutral ligand serves as a 3N,2O donor where the pyridine ring N, two azomethine N and two carbohydrazine oxygen atoms are coordinatively active, leaving the pyrazole-N atoms inactive. In the case of complex 5, each ligand molecule behaves as a 4N,O donor utilizing the pyridine N, one azomethine N, the nitrogen atom proximal to the azomethine of the remaining pendant arm and one pyrazole-N atom to one metal center and the carbohydrazide oxygen atom to the second metal center. The complexes 1-4 are pentagonal bipyramidal in geometry. In each case, the ligand molecule spans the equatorial plane while the apical positions are occupied by water molecules in 1, 3 and 4 and two N bonded thiocyanate ions in 2. In complex 5, the two Cu(II) centers have almost square pyramidal geometry (τ = 0.05 for Cu1 and 0.013 for Cu2). Four N atoms from a ligand molecule form the basal plane and the carbohydrazide oxygen atom of a second ligand molecule sits in the apex of the square pyramid. All the complexes have been X-ray crystallographically characterized. The Zn(II) and Cd(II) complexes show considerable fluorescence emission while the remaining complexes and the ligand molecule are fluorescent silent.  相似文献   

18.
Summary Synthesis of MHNAMT [3-methyl-4-(2-hydroxy-1 naphthalideneamino)-5-mercapto-1,2,4-triazole] and its IR and NMR spectral data are reported. The high stability of the characteristically coloured chelates with Cu(II), Co(II), Ni(II), Pd(II), Pt(IV) and Rh(III) has been made the basis for their efficient ascending TLC separations on silica gel G layers, when present together. Results of three different solvent systems are included to assess efficient resolution of the chelates.  相似文献   

19.
The potassium salt of salicylidene-DL-alanine (KHL), bis(benzylidene)ethylenediamine (A1), thiophene-o-carboxaldene-p-toluidine (A2), and its metal complexes of the formula [(MII(L)(A)(H2O)] (M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II); A = A1 or A2) are prepared. They are characterized by elemental analysis, magnetic susceptibility measurements, thermogravimetric analysis, and infrared and electronic spectral studies. The electronic spectral and magnetic moment data suggest an octahedral geometry for the complexes. All of these complexes, metal nitrates, fungicides (bavistin and emcarb), and ligands are screened for their antifungal activity against Aspergillus niger, Fusarium oxysporum, and Aspergillus flavus using a plate poison technique. The complexes show higher activity than those of the free ligands, metal nitrate, and the control (DMSO) and moderate activity against bavistin and emcarb. The text was submitted by the authors in English.  相似文献   

20.
Summary The preparation and characterization oftris-complexes of MnII, CoII, NiII, CuII and ZnII with a new pyridylhydrazone, 2-pyridylcarbaldehyde-N,N-dimethylhydrazone (pch), are described. In all the complexes pch behaves as a bidentate ligand binding through the pyridine and azomethyne nitrogen atoms. The complexes appear to be monomeric, high spin six-coordinate, and a distorted octahedral stereochemistry around the metal is suggested. The e.p.r. results for both CuII compounds indicate a mainly dx 2–y2 ground state with a static Jahn-Teller distortion, whilst for the MnII complex the e.p.r. data indicates a very low symmetry for the MnN6 polyhedron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号