首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that zinc oxide can be dissolved in the protic ionic liquid 1-methylimidazolium trifluoromethylsulfonate, [MIm]TfO at quite a high concentration (~ 2.5 mol/L). FTIR and Raman spectra revealed the association of zinc ions with 1-methylimidazole. The ZnO/[MIm]TfO solutions and their mixtures with water were employed as electrolytes for the electrodeposition of zinc. High current density electrodeposition of zinc can be achieved in the employed electrolytes. Spongy-like zinc structures with a high porosity were obtained in ZnO/[MIm]TfO and the formation of Au1.2Zn8.8 alloy was observed. Compact and hexagonal zinc deposits were found in the presence of water. The present results show the potential of ionic liquids as electrolytes for rechargeable zinc–air batteries.  相似文献   

2.
A novel microextraction method termed ionic liquid dispersive liquid–liquid microextraction (IL-DLLME) combining high-performance liquid chromatography with diode array detection (HPLC-DAD) was developed for the determination of insecticides in water samples. Four heterocyclic insecticides (fipronil, chlorfenapyr, buprofezin, and hexythiazox) were selected as the model compounds for validating this new method. This technique combines extraction and concentration of the analytes into one step, and the ionic liquid was used instead of a volatile organic solvent as the extraction solvent. Several important parameters influencing the IL-DLLME extraction efficiency such as the volume of extraction solvent, the type and volume of disperser solvent, extraction time, centrifugation time, salt effect as well as acid addition were investigated. Under the optimized conditions, good enrichment factors (209–276) and accepted recoveries (79–110%) were obtained for the extraction of the target analytes in water samples. The calibration curves were linear with correlation coefficient ranged from 0.9947 to 0.9973 in the concentration level of 2–100 μg/L, and the relative standard deviations (RSDs, n = 5) were 4.5–10.7%. The limits of detection for the four insecticides were 0.53–1.28 μg/L at a signal-to-noise ratio (S/N) of 3.  相似文献   

3.
Influence of inorganic salts on the system of liquid phase equilibrium of water + furfuryl alcohol + cyclopentanone at 298.2 K was studied. Different salt concentrations (0, 1 and 2 wt%) and the type of salt (LiCl, NaCl, KCl, and RbCl) were investigated. The results showed that the two-phase region of the ternary system enlarged by addition of salt. NRTL model was applied, and good correlation between the experimental data and the model was achieved as confirmed by the low rmsd values.  相似文献   

4.
Using high-pressure infrared methods, we have investigated close interactions of charge-enhanced C-H-O type in ionic liquid∕dimethyl sulfoxide (DMSO) mixtures. The solvation and association of the 1-butyl-3-methylimidazolium tetrafluoroborate (BMI(+)BF(4)(-)) and 1-butyl-2,3-dimethylimidazolium tetrafluoroborate (BMM(+)BF(4)(-)) in DMSO-d(6) were examined by analysis of C-H spectral features. Based on our concentration-dependent results, the imidazolium C-H groups are more sensitive sites for C-H-O than the alkyl C-H groups and the dominant imidazolium C-H species in dilute ionic liquid∕DMSO-d(6) should be assigned to the isolated (or dissociated) structures. As the dilute mixtures were compressed by high pressures, the loss in intensity of the bands attributed to the isolated structures was observed. In other words, high pressure can be used to perturb the association-dissociation equilibrium in the polar region. This result is remarkably different from what is revealed for the imidazolium C-H in the BMM(+)BF(4)(-)∕D(2)O mixtures. DFT-calculations are in agreement with our experimental results indicating that C(4)-H-O and C(5)-H-O interactions seem to play non-negligible roles for BMM(+)BF(4)(-)∕DMSO mixtures.  相似文献   

5.
6.
In this work we report the experimental measurements of excess molar enthalpy and excess molar volume, at 298.15 K and atmospheric pressure, on ethylammonium nitrate (EAN) and propylammonium nitrate (PAN) + water mixtures. Positive enthalpies were found for the two systems (maximum, at x 1 around 0.37 correspond to about 700 and 900 J mol−1 for EAN and PAN respectively). As the hydrophobic/hydrophilic ratio increases, along with the length of the alkyl chain in the ionic liquids, ILs, the specific interactions IL-water become less important. The excess molar volumes, V E, are negative over the entire composition range for the two binary mixtures. They have similar values but curves exhibit a different asymmetric shape and around equimolar composition they intersect each other. This behaviour: positive H E and negative V E, is not very common.  相似文献   

7.
Ionic liquids extend the Hofmeister series and create a wide range of new possibilities for processes involving salt effects on both soluble and crosslinked systems. This work reports on some mixtures of water with NaCl or an ionic liquid, either 1-ethyl-3-methylimidazolium tosylate or 1-hexyl-3-methylimidazolium chloride, which are better solvents for linear poly(N-vinylimidazole) (L-PVI) than water, i.e., that exhibit a salting-in effect. The intensity of the salt effects was measured on the basis of the polymer solubility, the decrease in polymer–solvent interaction parameter (measured by light scattering), and the increase of coil size (measured through the intrinsic viscosity). It was thus found that the intensity of the salting-in effect of either NaCl or 1-hexyl-3-methylimidazolium chloride on L-PVI is different (larger for the ionic liquid), which denotes that salt effects are not under anion control, and the mechanisms operating in the linear and crosslinked polymers are different. These results are discussed after accounting for the role of ion–polymer interactions.  相似文献   

8.
Surface properties for three binary mixtures containing a 1-butyl-3-methylimidazolium thiocyanate ([BMIM][SCN]) and a long-chain alcohol (1-butanol, 1-pentanol and 1-hexanol) were determined by surface tension data at the following temperatures: (298.15, 308.15, 318.15, 328.15 and 338.15) K. The surface tension data over the entire mole fraction range are correlated by the Fu et al.(FLW) and Myers-Scott (MS) models. There is good agreement between the experimental data and the results of correlations for 15 binary systems (the three systems at five temperatures) with an average relative error below 1.5%. In addition, the UNIFAC group contribution method is applied for calculation of activity coefficients of components in solution. Moreover, the relative adsorptions of alcohol at the air/liquid interface are determined using Gibbs adsorption isotherm. The obtained results show that the values of adsorption for mixtures of alcohols/[BMIM][SCN] increase with increasing the alkyl chain length of alcohol and decreasing temperature.  相似文献   

9.
A method termed dispersive liquid–liquid microextraction (DLLME) coupled with high-performance liquid chromatography-variable wavelength detection (HPLC-VWD) was developed. DLLME-HPLC-VWD is a method for determination of bisphenol A (BPA) in water samples. In this microextraction method, several parameters such as extraction solvent volume, sample volume, disperser solvent, ionic strength, pH, and disperser volume were optimised with the aid of interactive orthogonal array and a mixed level experiment design. First, an orthogonal array design was used to screen the significant variables for the optimisation. Second, the significant factors were optimised by using a mixed level experiment. Under the optimised extraction conditions (extraction solvent: ionic liquid [C6MIM][PF6], 60 µL; dispersive solvent: methanol, 0.4 mL; and pH = 4.0), the performance of the established method was evaluated. The response linearity of the method was observed in a range of 0.002–1.0 mg L?1 (three orders of magnitude) with correlation coefficient (R 2) of 0.9999. The repeatability of this method was 4.2–5.3% for three different BPA levels and the enrichment factors were above 180. The extraction recovery was about 50% for the three different concentrations with 3.4–6.4% of RSD. Limit of detection of the method was 0.40 µg L?1 at a signal-to-noise ratio of 3. In addition, the relative recovery of sample of Songhua River, tap water and barrel-drain water at different spiked concentration levels was ranged 95.8–103.0%, 92.6–98.6% and 87.2–95.3%, respectively. Compared with other extraction technologies, there have been the following advantages of quick, easy operation, and time-saving for the present method.  相似文献   

10.
Dispersive liquid–liquid microextraction (DLLME) has been proved to be a powerful tool for the rapid sample treatment of liquid samples providing at the same time high enrichment factors and extraction recoveries. A new, simple and easy to handle one step in-syringe set-up for DLLME is presented and critically discussed in this paper. The novel approach avoids the centrifugation step, typically off-line and time consuming, opening-up a new horizon on DLLME automation. The suitability of the proposal is evaluated by means of the determination of non-steroidal anti-inflammatory drugs in urine by liquid chromatography/ultraviolet detection. In the presented approach an ionic liquid is used as extractant. The target drugs can be determined in urine within the concentration range 0.02–10 μg mL−1, allowing their determination at therapeutic and toxic levels. Limits of detection were in the range from 8.3 ng mL−1 (indomethacin) to 32 ng mL−1 (ketoprofen). The repeatability of the proposed method expressed as RSD (n = 5) varied between 2.5% (for ketoprofen) and 8.6% (for indomethacin).  相似文献   

11.
A simple, rapid and efficient method, ionic liquid based dispersive liquid–liquid microextraction (IL-DLLME), has been developed for the first time for the determination of 18 polycyclic aromatic hydrocarbons (PAHs) in water samples. The chemical affinity between the ionic liquid (1-octyl-3-methylimidazolium hexafluorophosphate) and the analytes permits the extraction of the PAHs from the sample matrix also allowing their preconcentration. Thus, this technique combines extraction and concentration of the analytes into one step and avoids using toxic chlorinated solvents. The factors affecting the extraction efficiency, such as the type and volume of ionic liquid, type and volume of disperser solvent, extraction time, dispersion stage, centrifuging time and ionic strength, were optimised. Analysis of extracts was performed by high performance liquid chromatography (HPLC) coupled with fluorescence detection (Flu). The optimised method exhibited a good precision level with relative standard deviation values between 1.2% and 5.7%. Quantification limits obtained for all of these considered compounds (between 0.1 and 7 ng L−1) were well below the limits recommended in the EU. The extraction yields for the different compounds obtained by IL-DLLME, ranged from 90.3% to 103.8%. Furthermore, high enrichment factors (301–346) were also achieved. The extraction efficiency of the optimised method is compared with that achieved by liquid–liquid extraction. Finally, the proposed method was successfully applied to the analysis of PAHs in real water samples (tap, bottled, fountain, well, river, rainwater, treated and raw wastewater).  相似文献   

12.
13.
A hydrophobic thiol-functionalized ionic liquid (IL) was synthesized and immobilized tightly on a gold electrode surface via Au–S bond to construct a stable Au–IL|water interface. At the Au–IL|water interface, the electrochemiluminescence (ECL) of luminol-O2 system was investigated. The ECL intensity of luminol-O2 system at the Au–IL|water interface was much larger and more stable than that at Au|water interface. The enhanced ECL mechanism at the Au–IL|water interface was studied and discussed in details.  相似文献   

14.
Solid and liquid phase diagrams have been constructed for {water+triethylamine,or+N,N-dimethylformamide(DMF) or+N,N-dimethlacetamide (DMA)} Solid-hydrates form with the empirical formulae N(C2H5)3 3H2O,DMF 3H2O,DMF 2H2O,DMA 3H2O and (DMA)2 3H2O.All are congruently melting except the first which melts incongruently.The solid-hydrate formation is attributed to hydrogen bond.The results are compared with the references  相似文献   

15.
In this work, a hydrophilic task-specific ionic liquid (TSIL) of 1-chloroethyl-3-methylimidazolium chloride functionalized with 8-hydroxyquinoline was used in a dispersive liquid–liquid microextraction method followed by flame atomic absorption spectrometry for the enrichment and determination of trace amounts of cadmium (Cd2+) ions. The simultaneous chelation and extraction of Cd2+ ions was carried out by the TSIL. Fine droplets of the water-immiscible TSIL containing target analyte were generated in situ by addition of an anion exchanger potassium hexafluorophosphate (KPF6) salt to the sample tube. After phase separation by centrifugation for 4 min, the sedimented TSIL was diluted with acidified ethanol for measurement of Cd2+ content. Some significant parameters influence the preconcentration of Cd2+ ions such as sample pH, TSIL volume, amount of KPF6, non-ionic surfactant and salt concentration were investigated. Under the optimal conditions, calibration curve was linear in the range of 5–250 µg L?1 Cd2+ with correlation coefficient of 0.9975 and a detection limit of 0.55 µg L?1. The relative standard deviation for six replicate measurements of 50 µg L?1 Cd2+ was 1.5%. The method was successfully applied for the extraction and determination of Cd2+ ions in water and food samples.  相似文献   

16.
17.
A new analytical temperature-assisted ionic liquid-based dispersive liquid–liquid microextraction (TA-IL-DLLME) method was developed for glyphosate and aminomethylphosphonic acid determination in water samples. Extracted analytes were derivatized using 9-fluoroenylmethylchloroformate and quantified by liquid chromatography with fluorescence detection. For the TA-IL-DLLME method, two strategies for phase solubilization were evaluated; in approach 1, the ionic liquid and aqueous matrix sample were mixed and then heated, while in approach 2, the aqueous sample was first heated and then the ionic liquid was injected. For both approaches, optimization included parameters that significantly affect extraction efficiency: ionic liquid type and volume, solubilization temperature and time, cooling and centrifugation time. Among the evaluated ionic liquids, 1-decyl-3-methylimidazolium tetrafluoroborate showed the best performance for TA-IL-DLLME and was selected for the two solubilization approaches; with approach 2, slightly better results were obtained. Thus, sample analyses were performed using a procedure based on approach 2. An important matrix effect, attributed to the presence of salts and metals in real water samples was observed. Sample acidification before derivatization allowed this problem to diminish, with recoveries ranging from 75 and 99%, and enrichment factors between 57 and 76 for target analytes.  相似文献   

18.
The paper described a new ionic liquid, 1,3-dibutylimidazolium hexafluorophosphate, as extraction solvent for extraction and preconcentration of organophosphorus pesticides (fenitrothion, parathion, fenthion and phoxim) from water and fruit samples by dispersive liquid–liquid microextraction combined with high-performance liquid chromatography. The effects of experimental parameters, such as extraction solvent volume, disperser solvent and its volume, extraction and centrifugal time, sample pH, extraction temperature and salt addition, on the extraction efficiency were investigated. An extraction recovery of over 75% and enrichment factor of over 300-fold were obtained under the optimum conditions. The linearity relationship was also observed in the range of 5–1000 μg L−1 with the correlation coefficients (r2) ranging from 0.9988 to 0.9999. Limits of detection were 0.01–0.05 μg L−1 for four analytes. The relative standard deviations at spiking three different concentration levels of 20, 100 and 500 μg L−1 varied from 1.3–2.7, 1.4–1.9 and 1.1–1.7% (n = 7), respectively. Three real samples including tap water, Yellow River water and pear spiked at three concentration levels were analyzed and yielded recoveries ranging from 92.7–109.1, 95.0–108.2 and 91.2–108.1%, respectively.  相似文献   

19.
In this paper, the nanostructural organization and subpicosecond intermolecular dynamics in the mixtures of CS(2) and the room temperature ionic liquid (IL) 1-pentyl-3-methylimidazolium bis{(trifluoromethane)sulfonyl}amide ([C(5)mim][NTf(2)]) were studied as a function of concentration using molecular dynamics (MD) simulations and optical heterodyne-detected Raman-induced Kerr effect spectroscopy. At low CS(2) concentrations (<10 mol.% CS(2)/IL), the MD simulations indicate that the CS(2) molecules are localized in the nonpolar domains. In contrast, at higher concentrations (≥10 mol.% CS(2)/IL), the MD simulations show aggregation of the CS(2) molecules. The optical Kerr effect (OKE) spectra of the mixtures are interpreted in terms of an additivity model with the components arising from the subpicosecond dynamics of CS(2) and the IL. Comparison of the CS(2)-component with the OKE spectra of CS(2) in alkane solvents is consistent with CS(2) mainly being localized in the nonpolar domains, even at high CS(2) concentrations, and the local CS(2) concentration being higher than the bulk CS(2) concentration.  相似文献   

20.
A novel microextraction method is introduced based on dispersive liquid–liquid microextraction (DLLME) in which an in situ metathesis reaction forms a water-immiscible ionic liquid (IL) that preconcentrates aromatic compounds from water followed by separation using high-performance liquid chromatography. The simultaneous extraction and metathesis reaction forming the IL-based extraction phase greatly decreases the extraction time as well as provides higher enrichment factors compared to traditional IL DLLME and direct immersion single-drop microextraction methods. The effects of various experimental parameters including type of extraction solvent, extraction and centrifugation times, volume of the sample solution, extraction IL and exchanging reagent, and addition of organic solvent and salt were investigated and optimized for the extraction of 13 aromatic compounds. The limits of detection for seven polycyclic aromatic hydrocarbons varied from 0.02 to 0.3 μg L−1. The method reproducibility produced relative standard deviation values ranging from 3.7% to 6.9%. Four real water samples including tap water, well water, creek water, and river water were analyzed and yielded recoveries ranging from 84% to 115%.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号