首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Imine ligands derived from 6-amino-6-desoxy-1,2,3-O-trimethyl--d-glucopyranose or from various amino acid esters react with Fe2(CO)9 to give chiral iron carbonyl complexes. Derivatives produced from benzaldehyde react via a C–H activation reaction in ortho-position with respect to the exocyclic imine substituent followed by an intramolecular hydrogen transfer reaction of the activated hydrogen towards the former imine carbon atom. The molecular structure of the diiron hexacarbonyl complexes of benzylideneamino-l-phenylalanine ethyl ester and benzylideneamino-l-methionine methyl ester were characterized by means of X-ray structure determinations. Imines produced from cinnamaldehyde upon reaction with Fe2(CO)9 produce mononuclear iron tricarbonyl complexes with the imine ligand being coordinated in a η4-fashion.  相似文献   

2.
A theoretical study of the mechanism of decarboxylation of beta-keto acids is described. A cyclic transition structure was found with essentially complete proton transfer from the carboxylic acid to the beta-carbonyl group. The activation barrier for decarboxylation of formylacetic acid is predicted to be 28.6 kcal/mol (MP4SDTQ/6-31G//MP2/6-31G) while loss of CO(2) from its anion exhibits a barrier of only 20.6 kcal/mol (MP4SDTQ/6-31+G//MP2/6-31+G). Barrier heights of decarboxylation of malonic acid and alpha,alpha-dimethylacetoacetic acid are predicted to be 33.2 and 26.7 kcal/mol, respectively. Model enzyme studies using a thio methyl ester of malonate anion suggests that the role of malonyl-CoA is to afford a polarizable sulfur atom to stabilize the developing enolate anion in the transition structure for decarboxylation. Adjacent positively charged ammonium ions are also observed to stabilize the loss of CO(2) from a carboxylate anion by through-bond Coulombic stabilization of the transition structure.  相似文献   

3.
Carboxylic acids which decompose spontaneously on boiling or by oxidation in aqueous solutions can be determined by titration of the carbon dioxide formed after distillation as described previously. Acetonedicarboxylic acid and p-aminosalicylic acid are determined by spontaneous decarboxylation. Hydrolysis must precede the determination for acetoacetic ester, phenylethylcyanoacetic ethyl ester and for carbonic acid esters. Oxidative decarboxylation allows determinations of glyoxylic acid, aldonic acids, sugar dicarboxylic acids, formic acid, oxalic acid and α-amino acids. The titration of the carbon dioxide formed can be done with 0.1 or 0.01 N solutions. The interference of atmospheric carbon dioxide is avoided by the use of pentane as a sealing liquid.  相似文献   

4.
Silver- and copper-catalyzed decarboxylation reactions of aryl carboxylic acids were investigated with the aid of density functional theory calculations. The reaction mechanism starts with a carboxylate complex of silver or copper. Decarboxylation occurs via ejecting CO(2) from the carboxylate complex followed by protodemetallation with an aryl carboxylic acid molecule to regenerate the starting complex. Our results indicated that the primary factor to affect the overall reaction barriers is the ortho steric destabilization effect on the starting carboxylate complexes for most cases. Certain ortho substituents that are capable of coordinating with the catalyst metal center without causing significant ring strain stabilize the decarboxylation transition states and reduce the overall reaction barriers. However, the coordination effect is found to be the secondary factor when compared with the ortho effect.  相似文献   

5.
Tetranuclear copper(II) complexes containing alpha-D-glucose-1-phosphate (alpha-D-Glc-1P), [Cu4(mu-OH){mu-(alpha-D-Glc-1P)}2(bpy)4(H2O)2]X3 [X = NO3 (1a), Cl (1b), Br (1c)], and [Cu4(mu-OH){mu-(alpha-D-Glc-1P)}2(phen)4(H2O)2](NO3)3 (2) were prepared by reacting the copper(II) salt with Na2[alpha-D-Glc-1P] in the presence of diimine ancillary ligands, and the structure of 2 was characterized by X-ray crystallography to comprise four {Cu(phen)}2+ fragments connected by the two sugar phosphate dianions in 1,3-O,O' and 1,1-O mu4-bridging fashion as well as a mu-hydroxo anion. The crystal structure of 2 involves two chemically independent complex cations in which the C2 enantiomeric structure for the trapezoidal tetracopper(II) framework is switched according to the orientation of the alpha-D-glucopyranosyl moieties. Temperature-dependent magnetic susceptibility data of 1a indicated that antiferromagnetic spin coupling is operative between the two metal ions joined by the hydroxo bridge (J = -52 cm(-1)) while antiferromagnetic interaction through the Cu-O-Cu sugar phosphate bridges is weak (J = -13 cm(-1)). Complex 1a readily reacted with carboxylic acids to afford the tetranuclear copper(II) complexes, [Cu4{mu-(alpha-D-Glc-1P)}2(mu-CA)2(bpy)4](NO3)2 [CA = CH3COO (3), o-C6H4(COO)(COOH) (4)]. Reactions with m-phenylenediacetic acid [m-C6H4(CH2COOH)2] also gave the discrete tetracopper(II) cationic complex [Cu4{mu-(alpha-D-Glc-1P)}2(mu-m-C6H4(CH2COO)(CH2COOH))2(bpy)4](NO3)2 (5a) as well as the cluster polymer formulated as {[Cu4{mu-(alpha-D-Glc-1P)}2(mu-m-C6H4(CH2COO)2)(bpy)4](NO3)2}n (5b). The tetracopper structure of 1a is converted into a symmetrical rectangular core in complexes 3, 4, and 5b, where the hydroxo bridge is dissociated and, instead, two carboxylate anions bridge another pair of Cu(II) ions in a 1,1-O monodentate fashion. The similar reactions were applied to incorporate sugar acids onto the tetranuclear copper(II) centers. Reactions of 1a with delta-D-gluconolactone, D-glucuronic acid, or D-glucaric acid in dimethylformamide resulted in the formation of discrete tetracopper complexes with sugar acids, [Cu4{mu-(alpha-D-Glc-1P)}2(mu-SA)2(bpy)4](NO3)2 [SA = D-gluconate (6), D-glucuronate (7), D-glucarateH (8a)]. The structures of 6 and 7 were determined by X-ray crystallography to be almost identical with that of 3 with additional chelating coordination of the C-2 hydroxyl group of D-gluconate moieties (6) or the C-5 cyclic O atom of D-glucuronate units (7). Those with D-glucaric acid and D-lactobionic acid afforded chiral one-dimensional polymers, {[Cu4{mu-(alpha-D-Glc-1P)}2(mu-D-glucarate)(bpy)4](NO3)2}n (8b) and {[Cu4{mu-(alpha-D-Glc-1P)}2(mu-D-lactobionate)(bpy)4(H2O)2](NO3)3}n (9), respectively, in which the D-Glc-1P-bridged tetracopper(II) units are connected by sugar acid moieties through the C-1 and C-6 carboxylate O atoms in 8b and the C-1 carboxylate and C-6 alkoxy O atoms of the gluconate chain in 9. When complex 7 containing d-glucuronate moieties was heated in water, the mononuclear copper(II) complex with 2-dihydroxy malonate, [Cu(mu-O2CC(OH)2CO2)(bpy)] (10), and the dicopper(II) complex with oxalate, [Cu2(mu-C2O4)(bpy)2(H2O)2](NO3)2 (11), were obtained as a result of oxidative degradation of the carbohydrates through C-C bond cleavage reactions.  相似文献   

6.
Reactions of [(C4Me4)Co(MeCN)3]PF6 with aromatic amino acid derivatives give the arene complexes [(C4Me4)Co(amino acid)]PF6 (amino acid = ethyl ester of N-acetylphenylalanine, N-acetyltyrosine or N-acetyltryptophan) in 75–85% yields; the structure of the tyrosine complex was determined by X-ray diffraction.  相似文献   

7.
A series of six new ligands (L(1)-L(6)) suitable for the formation of luminescent lanthanide complexes in water is described. Ligands L(1)-L(4) are constructed from two 6'-carboxy-6-methylene-2,2'-bipyridine chromophoric arms bonded to the amino function of a 2-aminomethylene-6-carboxy-pyridine (L(1)), an N,N-diacetate-ethylene diamine (L(2)), a serine (L(3)), or an aminomalonic acid (L(4)). For ligands L(5) and L(6), the linking amino function is provided by a glutamic acid, and the anionic functions at the 6'-position of the bipyridyl arms are made of the sodium salts of monoethylphosphonic ester (L(5)) and phosphonic acid (L(6)). The synthesis and characterisation of the ligands are described, together with the study of the formation of lanthanide complexes with europium and terbium. In the case of L(3), the europium complex obtained in acidic conditions was crystallised and the X-ray crystal structure is depicted. Photophysical properties of the complexes were studied by means of UV-visible absorption, and steady-state and time-resolved luminescence spectroscopy. Excited-state luminescence lifetimes of the complexes were determined in water and deuterated water to gain insight into the number of water molecules directly coordinated in the first coordination sphere of the complexes. The coordination behaviour of the series of ligands is questioned in the light of the spectroscopic data and discussed in terms of protection of the cation towards water molecules and their impact on the luminescence efficiency.  相似文献   

8.
Mononuclear iron(II) alpha-keto carboxylate and carboxylate compounds of the sterically hindered tridentate face-capping ligand Tp(Ph2) (Tp(Ph2) = hydrotris(3,5-diphenylpyrazol-1-yl)borate) were prepared as models for the active sites of nonheme iron oxygenases. The structures of an aliphatic alpha-keto carboxylate complex, [Fe(II)(Tp(Ph2))(O(2)CC(O)CH(3))], and the carboxylate complexes [Fe(II)(Tp(Ph2))(OBz)] and [Fe(II)(Tp(Ph2))(OAc)(3,5-Ph(2)pzH)] were determined by single-crystal X-ray diffraction, all of which have five-coordinate iron centers. Both the alpha-keto carboxylate and the carboxylate compounds react with dioxygen resulting in the hydroxylation of a single ortho phenyl position of the Tp(Ph2) ligand. The oxygenation products were characterized spectroscopically, and the structure of the octahedral iron(III) phenolate product [Fe(III)(Tp(Ph2))(OAc)(3,5-Ph(2)pzH)] was established by X-ray diffraction. The reaction of the alpha-keto carboxylate model compounds with oxygen to produce the phenolate product occurs with concomitant oxidative decarboxylation of the alpha-keto acid. Isotope labeling studies show that (18)O(2) ends up in the Tp(Ph2) phenolate oxygen and the carboxylate derived from the alpha-keto acid. The isotope incorporation mirrors the dioxygenase nature of the enzymatic systems. Parallel studies on the carboxylate complexes demonstrate that the oxygen in the hydroxylated ligand is also derived from molecular oxygen. The oxygenation of the benzoylformate complex is demonstrated to be first order in metal complex and dioxygen, with activation parameters DeltaH++ = 25 +/- 2 kJ mol(-1) and DeltaS++ = -179 +/- 6 J mol(-1) K(-1). The rate of appearance of the iron(III) phenolate product is sensitive to the nature of the substituent on the benzoylformate ligand, exhibiting a Hammett rho value of +1.3 indicative of a nucleophilic mechanism. The proposed reaction mechanism involves dioxygen binding to produce an iron(III) superoxide species, nucleophilic attack of the superoxide at the alpha-keto functionality, and oxidative decarboxylation of the adduct to afford the oxidizing species that attacks the Tp(Ph2) phenyl ring. Interestingly, the alpha-keto carboxylate complexes react 2 orders of magnitude faster than the carboxylate complexes, thus emphasizing the key role that the alpha-keto functionality plays in oxygen activation by alpha-keto acid-dependent iron enzymes.  相似文献   

9.
Tridentate Schiff-base carboxylate-containing ligands, derived from the condensation of 2-imidazolecarboxaldehyde with the amino acids beta-alanine (H2L1) and 2-aminobenzoic acid (H2L5) and the condensation of 2-pyridinecarboxaldehyde with beta-alanine (HL2), D,L-3-aminobutyric acid (HL3), and 4-aminobutyric acid (HL4), react with copper(II) perchlorate to give rise to the helical-chain complexes [[Cu(mu-HL1)(H2O)](ClO4)]n (1), [[Cu(mu-L2)(H2O)](ClO4).2H2O]n (2), and [[Cu(mu-L3)(H2O)](ClO4).2H2O]n (3), the tetranuclear complex [[Cu(mu-L4)(H2O)](ClO4)]4 (4), and the mononuclear complex [Cu(HL5)(H2O)](ClO4).1/2H2O (5). The reaction of copper(II) chloride with H2L1 leads not to a syn-anti carboxylate-bridged compound but to the chloride-bridged dinuclear complex [Cu(HL1)(mu-Cl)]2 (6). The structures of these complexes have been solved by X-ray crystallography. In complexes 1-4, roughly square-pyramidal copper(II) ions are sequentially bridged by syn-anti carboxylate groups. Copper(II) ions exhibit CuN2O3 coordination environments with the three donor atoms of the ligand and one oxygen atom belonging to the carboxylate group of an adjacent molecule occupying the basal positions and an oxygen atom (from a water molecule in the case of compounds 1-3 and from a perchlorate anion in 4) coordinated in the apical position. Therefore, carboxylate groups are mutually cis oriented and each syn-anti carboxylate group bridges two copper(II) ions in basal-basal positions with Cu...Cu distances ranging from 4.541 A for 4 to 5.186 A for 2. In complex 5, the water molecule occupies an equatorial position in the distorted octahedral environment of the copper(II) ion and the Cu-O carboxylate distances in axial positions are very large (>2.78 A). Therefore, this complex can be considered as mononuclear. Complex 6 exhibits a dinuclear parallel planar structure with Ci symmetry. Copper(II) ions display a square-pyramidal coordination geometry (tau = 0.06) for the N2OCl2 donor set, where the basal coordination sites are occupied by one of the bridging chlorine atoms and the three donor atoms of the tridentate ligand and the apical site is occupied by the remaining bridging chlorine atom. Magnetic susceptibility measurements indicate that complexes 1-4 exhibit weak ferromagnetic interactions whereas a weak antiferromagnetic coupling has been established for 6. The magnetic behavior can be satisfactorily explained on the basis of the structural data for these and related complexes.  相似文献   

10.
The anilic acids, 2,5-dihydroxy-1,4-benzoquinone (1a), 2,5-dibromo-3,6-dihydroxy-1,4-benzoquinone (bromanilic acid; 1b), 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone (chloranilic acid; 1c), and 2,5-dicyano-3,6-dihydroxy-1,4-benzoquinone (cyananilic acid; 1d), were cocrystallized with rigid organic ligands containing two pyridine rings, 2,4-bipyridine (2a), 4,4'-bipyridine (2b), 1,2-bis(2-pyridyl)ethylene (3a), 1,2-bis(4-pyridyl)ethylene (3b), 2,2'-dipyridylacetylene (4a), 3,3'-dipyridylacetylene (4b), and 4,4'-dipyridylacetylene (4c). Fourteen complexes 5-18 were obtained as single crystals, and their crystal structures were successfully determined by X-ray analysis. All complexes except those with 2a are 1:1 and are composed of an infinite linear or zigzag tape structure, the formation of which is ascribed to intermolecular O-H...N, N(+)-H...O, or N(+)-H...O(-) hydrogen bonds or a combination of these between the anilic acids and the dipyridyl compounds. In the complexes 5 and 6, no infinite tape structure is observed although the molecular units connected by a similar hydrogen-bonding pattern are formed. For the 1:1 complexes, we have found two types of stacking arrangements, segregated stacks (7, 9, 12-15, 18) and alternated ones (8, 10, 11, 16, 17). In the complexes of 1c with the series of dipyridylacetylenes 4 (14, 15, 17), the neutral, dication, and monocaction states are formed depending on the nitrogen positions, which can be attributed to the different basicity of the pyridyl groups.  相似文献   

11.
Mono-N-substituted azamacrocycles 2 – 7 , containing a carboxyalkyl or carboxyaryl side-chain, are obtained by reacting a five-fold excess of the macrocycle with 1 equiv. of a suitable halogenocarboxylic acid in alkaline aqueous EtOH. For halogenocarboxylic acids, which easily lactonize under alkaline conditions, a variant with the corresponding ester or nitrile as alkylating agent is also described. The salient point of this synthesis lies in the use of an excess of the macrocycle over the alkylating agent, thus reducing the amount of polyalkylation to a minimum, and in the easy separation of the excess of unreacted educt from the aminocarboxylic acid. These new ligands form Ni2+ and Cu2+ complexes, the spectral properties of which have been studied. In the case of the Cu2+ complexes with ligand 2 , 3 , and 6 , a pH-dependent color change is observed. This is explained with an equilibrium between a species, in which the carboxylate group is bound to the metal, and one, in which it is protonated and non-coordinated. In the case of the Ni2+ complexes with the same ligands, only the species with a coordinated carboxylate was observed. In the Cu2+ and Ni2+ complexes with ligands 4 and 5 , however, the carboxylate group does not coordinate at all, because of the length or the special structure of the chain.  相似文献   

12.
Combination of 1,3-bis(2,6-diisopropylphenyl)imidazolum-2-carboxylate (IPrCO(2)) with the Lewis acids MBPh(4), where M = Li or Na, provided two separate complexes. The crystal structures of these complexes revealed that coordination to NaBPh(4) yielded a dimeric species, yet coordination of IPrCO(2) with LiBPh(4) yielded a monomeric species. Combination of 1,3-bis(2,4,6-trimethylphenyl)imidazolum-2-carboxylate (IMesCO(2)) with LiBPh(4) also afforded a dimeric species that was similar in global structure to that of the IPrCO(2)+NaBPh(4) dimer. In all three cases, the cation of the organic salt was coordinated to the oxyanion of the zwitterionic carboxylate. Thermogravimetric analysis of the crystals demonstrated that decarboxylation occurred at lower temperatures than the decarboxylation temperature of the parent NHC·CO(2) (NHC = N-heterocyclic carbene). Kinetic analysis of the transcarboxylation of IPrCO(2) to acetophenone with NaBPh(4) to yield sodium benzoylacetate was performed. First-order dependences were observed for IPrCO(2) and acetophenone, whereas zero -order dependence was observed for NaBPh(4). Direct dicarboxylation was observed when I(t)BuCO(2) was added to MeCN in the absence of added MBPh(4).  相似文献   

13.
Selective addition of the chiral, sulfonimidoyl substituted bis(allyl)titanium complexes 5a-d, which are configurationally labile in regard to the Calpha-atoms, to N-toluenesulfonyl (Ts)-, N-2-trimethylsilylethanesulfonyl (SES)-, and N-tert-butylsulfonyl (Bus) alpha-imino ester (9a-c) in the presence of Ti(OiPr)(4) and ClTi(OiPr)(3) afforded with high regio- and diastereoselectivities in good yields the (syn, E)-configured beta-alkyl-gamma,delta-unsaturated alpha-amino acid derivatives 2a-g, which carry a chiral, electron-withdrawing nucleofuge at the delta-position and a cyclohexyl, an isopropyl, a phenyl, and a methyl group at the beta-position. Addition of the cyclic bis(allyl)titanium complex 14 to N-Bus alpha-imino ester 9c afforded with similar high regio- and diastereoselectivities the (E)- and (Z)-configured amino acid derivatives (E)-8 and (Z)-8. Reaction of complexes 5a-d with alpha-imino esters 9a-c in the presence of Ti(OiPr)(4) occurs stepwise to give first the mono(allyl)titanium complexes containing 2a-g as ligands, which react in the presence of ClTi(OiPr)(3) with a second molecule of 9a-c with formation of two molecules of 2a-g. Formation of (S,R,E)-configured homoallylic amines 2a-g entails Si,Re,E processes of alpha-imino esters 9a-c with the (R,R)-configured bis(allyl)titanium complexes (R,R)-5a-d and (R)-configured mono(allyl)titanium complexes (R)-17a-d, both of which are most likely in rapid equilibrium with their (S,S)-diastereomers and (S)-diastereomers, respectively. Interestingly, in the reaction of 5a-d with aldehydes, the (S,S)-configured complexes (S,S)-5a-d are the ones which react faster. Reaction of the N-titanated amino acid derivatives Ti-2a and Ti-2b with N-Ts alpha-imino ester 9a led to the highly diastereoselective formation of imidazolidinones 15a and 15b, respectively. Cleavage of the sulfonamide group of the N-Bus amino acid derivative 2d with CF(3)SO(3)H gave quantitatively the sulfonimidoyl functionalized amino acid H-2d. A Ni-catalyzed cross-coupling reaction of the amino acid derivative 2e with ZnPh(2) led to a substitution of the sulfonimidoyl group by a phenyl group and furnished the enantiomerically pure protected alpha-amino acid Bus-1. Two new N-sulfonyl alpha-imino esters, the SES and the Bus alpha-imino esters 9b and 9c, respectively, have been synthesized from the corresponding sulfonamides by the Kresze method in medium to good yields. The N-SES alpha-imino ester 9b and the N-Bus alpha-imino ester 9c should find many synthetic applications, in particular, in cases where the N-Ts alpha-imino ester 9a had been used before.  相似文献   

14.
A facile synthetic approach to 2‐amino‐5‐halogen‐pyrimidine‐4‐carboxylic acids from 5‐halogen‐2‐methylsulfonylpyrimidine‐4‐carboxylic acid by nucleophilic displacement of the methylsulfonyl group with primary and secondary aliphatic amines has been developed. The titled amino acids underwent decarboxylation, yielding 2‐amino‐5‐halogenpyrimidines. Starting from 2‐amino‐5‐chloropyrimidine‐4‐carboxylic acid chlorides, 2‐[5‐chloro‐2‐(amino)‐4‐pyrimidinyl]‐2‐oxo‐1‐(2‐pyridyl)‐ethyl cyanides were obtained in excellent yields.  相似文献   

15.
A series of dipeptide substituted nickel complexes with the general formula, [Ni(P(Ph)(2)N(NNA-amino acid/ester)(2))(2)](BF(4))(2), have been synthesized and characterized (P(2)N(2) = 1,5-diaza-3,7-diphosphacyclooctane, and the dipeptide consists of the non-natural amino acid, 3-(4-aminophenyl)propionic acid (NNA), coupled to amino acid/esters = glutamic acid, alanine, lysine, and aspartic acid). Each of these complexes is an active electrocatalyst for H(2) production. The effects of the outer-coordination sphere on the catalytic activity for the production of H(2) were investigated; specifically, the impact of sterics, the ability of the side chain or backbone to protonate and the pK(a) values of the amino acid side chains were studied by varying the amino acids in the dipeptide. The catalytic rates of the different dipeptide substituted nickel complexes varied by over an order of magnitude. The amino acid derivatives display the fastest rates, while esterification of the terminal carboxylic acids and side chains resulted in a decrease in the catalytic rate by 50-70%, implicating a significant role of protonated sites in the outer-coordination sphere on catalytic activity. For both the amino acid and ester derivatives, the complexes with the largest substituents display the fastest rates, indicating that catalytic activity is not hindered by steric bulk. These studies demonstrate the significant contribution that the outer-coordination sphere can have in tuning the catalytic activity of small molecule hydrogenase mimics.  相似文献   

16.
Reaction of potassium dichromate with gamma-glutamylcysteine, N-acetylcysteine, and cysteine in aqueous solution resulted in the formation of 1:1 complexes of Cr(VI) with the cysteinyl thiolate ligand. The brownish red Cr(VI)-amino acid/peptide complexes exhibited differential stability in aqueous solutions at 4 degrees C and ionic strength = 1.5 M, decreasing in stability in the order: gamma-glutamylcysteine > N-acetylcysteine > cysteine. (1)H, (13)C, and (17)O NMR studies showed that the amino acids act as monodentate ligands and bind to Cr(VI) through the cysteinyl thiolate group, forming RS-Cr(VI)O(3)(-) complexes. No evidence was obtained for involvement of any other possible ligating groups, e.g., amine or carboxylate, of the amino acid/peptide in binding to Cr(VI). EPR studies showed that chromium(V) species at g = 1.973-4 were formed upon reaction of potassium dichromate with gamma-glutamylcysteine and N-acetylcysteine. Reaction of potassium dichromate or sodium dichromate with N-acetylcysteine and the methyl ester of N-acetylcysteine in N,N-dimethylformamide (DMF) also led to the formation of RS-Cr(VI)O(3)(-) complexes as determined by UV/vis, IR, and (1)H NMR spectroscopy. Thus, an early step in the reaction of Cr(VI) with cysteine and cysteine derviatives in aqueous and DMF solutions involves the formation of RS-CrO(3)(-) complexes. The Cr(VI)-thiolate complexes are more stable in DMF than in aqueous solution, and their stability towards reduction in aqueous solution follows the order cysteine < N-acetylcysteine < gamma-glutamylcysteine < glutathione.  相似文献   

17.
Interaction of dipropyltin(IV) with selected amino acids, peptides, dicarboxylic acids or DNA constituents was investigated using potentiometric techniques. Amino acids form 1?:?1 and 1?:?2 complexes and, in some cases, protonated complexes. The amino acid is bound to dipropyltin(IV) by the amino and carboxylate groups. Serine is complexed to dipropyltin(IV) with ionization of the alcoholic group. A relationship exists between the acid dissociation constant of the amino acids and the formation constants of the corresponding complexes. Dicarboxylic acids form both 1?:?1 and 1?:?2 complexes. Diacids forming five- and six-membered chelate rings are the most stable. Peptides form complexes with stoichiometric coefficients 111(MLH), 110(ML) and 11-1(MLH?1)(tin: peptide: H+). The mode of coordination is discussed based on existing data and previous investigations. DNA constituents inosine, adenosine, uracil, uridine, and thymine form 1?:?1 and 1?:?2 complexes and the binding sites are assigned. Inosine 5′-monophosphate, guanosine 5′-monophosphate, adenosine 5′-monophosphate and adenine form protonated species in addition to 1?:?1 and 1?:?2 complexes. The protonation sites and tin-binding sites were elucidated. Cytosine and cytidine do not form complexes with dipropyltin(IV) due to low basicity of the donor sites. The stepwise formation constants of the complexes formed in solution were calculated using the non-linear least-square program MINIQUAD-75. The concentration distribution of the various complex species was evaluated as a function of pH.  相似文献   

18.
A novel family of cystine-based spirobicyclic peptides (cystinospiranes) has been synthesized by a single-step procedure involving condensation of pentaerythritol-derived tetrachloride with either the simple L-cystine dimethyl ester or its C,C'-extended bispeptides leading to a variety of 19-membered spirobicyclic peptides or its N,N'-extended bispeptides affording the ring-expanded 25-membered cystinospiranes. The design is flexible with respect to the ring size that can be adjusted depending upon the length of the N,N'-extended cystine bispeptide, and the choice of an amino acid, as illustrated here with the preparation of a large number of cystinospiranes containing a wide variety of amino acids. X-ray crystal structure of the parent spirane (5a) revealed nanotube formation by vertical stacking of relatively flat spirobicyclic molecules through contiguous NH- - -O==C hydrogen bonding. The fused pair of parallel nanotubes is open-ended, hollow, and extends to infinity. Crystallographic parameters are the following: C(33)H(52)N(4)O(16)S(4), space group C2, a = 42.181(3) A, b = 5.1165(7) A, c = 11.8687(9) A, beta = 106.23(1) degrees.  相似文献   

19.
Two new bifunctional chelators that are derivatives of the bis(thiosemicarbazone) ATSMH(2) proligand have been prepared, one with two phenyl carboxylate substituents on the exocyclic nitrogens (L(1)H(2)) and one with a single phenyl carboxylate (L(2)H(2)). The new ligands have been characterised by NMR spectroscopy, mass spectrometry and in the case of L(1)H(2) by X-ray crystallography. The copper, nickel and zinc complexes of the new ligands have been synthesised and characterised. Electrochemical measurements show that the copper(II) complexes undergo a reversible reduction attributable to a Cu(II)/Cu(I) process. The new proligands have been tethered to the N-alpha-Boc-protected amino acids lysine and ornithine using solution and solid phase methods. The new amino acid conjugates form copper complexes and the complexes have been characterised by mass spectrometry and electronic spectroscopy. The bifunctional chelator L(2)H(2) has been conjugated to the tumour targeting peptide octreotide and the new ATSMH(2)-octreotide conjugate and its copper complex have been characterized by mass spectrometry. These new systems have the potential to be used for new targeted copper radiopharmaceuticals for imaging and therapy.  相似文献   

20.
Zinc complexes of the unsymmetric, binucleating Schiff base ligands 3-(N-[2-(dimethylamino)ethyl]iminomethyl)-salicylic acid (H2L1) and 3-[N-(2-pyridylmethyl)iminomethyl]-salicylic acid (H2L2) have been studied in the solid state as well as in solution. Reaction of ZnX2 (X = NO3-, CH3CO2-) with 3-formylsalicylic acid and N,N-dimethylethylenediamine at neutral or slightly acidic pH afforded the dinuclear complexes [Zn2(HL1)2(H2O)2](NO3)2.2H2O (1a) and [Zn2(HL1)2(CH3CO2)2].6H2O (1b). The Zn ions, which are 3.126(1) A (1a) and 3.2665(7) A (1b) apart, are bridged by two phenolate oxygens. Further coordination sites of the ligand are the imine nitrogen and carboxylate oxygen, while the amino nitrogen is protonated. On dissolution in DMSO or DMF, 1a and 1b are converted into the mononuclear species [Zn(HL1)]+. Cleavage of the dinuclear complexes is accompanied by migration of the ammonium proton to the carboxylate group and coordination of the amino nitrogen to Zn. Reaction of 1b with base yielded the novel tetranuclear Zn complex [Zn4(L1)4].6.5H2O (2) that exhibits coordination number asymmetry. The four Zn ions having N2O3 and N2O4 coordination environments are located at the corners of a nearly square-planar rectangle. H2L2 binds Zn via the phenolate oxygen and, imine and pyridine nitrogens in acidic solution. Deprotonation of the carboxyl group in alkaline solution gave the tetranuclear compound [Zn4(L2)4].4.5H2O (4) with a cubane-like Zn4O4 core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号