首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present a definition for metastable states applicable to arbitrary finite state Markov processes satisfying detailed balance. In particular, we identify a crucial condition that distinguishes metastable states from other slow decaying modes and which allows us to show that our definition has several desirable properties similar to those postulated in the restricted ensemble approach. The intuitive physical meaning of this condition is simply that the total equilibrium probability of finding the system in the metastable state is negligible.  相似文献   

2.
We reveal that for a realistic system, interference effects are obtained such as the suppression of central line and inner sidebands and the narrowing of the outer fluorescence sidebands. For this purpose, we consider a spontaneous decay from an excited state to a metastable state when the excited and metastable states are resonantly coupled to an auxiliary metastable state by a laser field and a microwave field, respectively. The fluorescence spectrum evolves from a five-peaked structure into a doublet of ultrasharp lines as the ratio of the laser field Rabi frequency to the microwave Rabi frequency is decreased. The physical origin is presented in terms of dressed states.  相似文献   

3.
In this paper we calculate the mean number of metastable states for spin glasses on so called random thin graphs with couplings taken from a symmetric binary distribution . Thin graphs are graphs where the local connectivity of each site is fixed to some value c. As in totally connected mean field models we find that the number of metastable states increases exponentially with the system size. Furthermore we find that the average number of metastable states decreases as c in agreement with previous studies showing that finite connectivity corrections of order 1/c increase the number of metastable states with respect to the totally connected mean field limit. We also prove that the average number of metastable states in the limit is finite and converges to the average number of metastable states in the Sherrington-Kirkpatrick model. An annealed calculation for the number of metastable states of energy E is also carried out giving a lower bound on the ground state energy of these spin glasses. For small c one may obtain analytic expressions for . Received 14 October 1999 and Received in final form 14 December 1999  相似文献   

4.
Statistical mechanics explains many localization phenomena of lattices such as the discrete nonlinear Schrödinger equation. However, numerical simulations show that the complete thermalization is rarely achieved. Instead, one observes metastable statistical states that are robust when excited locally. This paper investigates thermodynamically metastable states where the trajectory is confined to some part of the energy shell. The partition function and the entropy are computed with a perturbation method. This method is applicable to stable and metastable states, and it allows us to give approximative analytic expressions for the entropy in the complete thermodynamic state space.  相似文献   

5.
We perform path integral Monte Carlo simulations to study the imaginary time dynamics of metastable supercooled superfluid states and nearly superglassy states of a one component fluid of spinless bosons square wells. Our study shows that the identity of the particles and the exchange symmetry is crucial for the frustration necessary to obtain metastable states in the quantum regime. Whereas the simulation time has to be chosen to determine whether we are in a metastable state or not, the imaginary time dynamics tells us if we are or not close to an arrested glassy state.  相似文献   

6.
In this tutorial paper we present a comprehensive review of the escape dynamics from quantum metastable states in dissipative systems and related noise-induced effects. We analyze the role of dissipation and driving in the escape process from quantum metastable states with and without an external driving force, starting from a nonequilibrium initial condition. We use the Caldeira–Leggett model and a non-perturbative theoretical technique within the Feynman–Vernon influence functional approach in strong dissipation regime. In the absence of driving, we find that the escape time from the metastable region has a nonmonotonic behavior versus the system-bath coupling and the temperature, producing a stabilizing effect in the quantum metastable system. In the presence of an external driving, the escape time from the metastable region has a nonmonotonic behavior as a function of the frequency of the driving, the thermal-bath coupling and the temperature. The quantum noise enhanced stability phenomenon is observed in both systems investigated. Finally, we analyze the resonantly activated escape from a quantum metastable state in the spin-boson model. We find quantum stochastic resonant activation, that is the presence of a minimum in the escape time as a function of the driving frequency. Background and introductory material has been added in the first three sections of the paper to make this tutorial review reasonably self-contained and readable for graduate students and non-specialists from related areas.  相似文献   

7.
Using computer simulations, we show that metastable states still occur in two-lane traffic models with slow to start rules. However, these metastable states no longer exist in systems where aggressive drivers (which do not look back before changing lanes) are present. Indeed, the presence of only one aggressive driver in the circuit, triggers the breakdown of the high flow states. In these systems, the steady state is unique and its relaxation dynamics should depend on the lane changing probability pch and the number of aggressive drivers present in the circuit. It is found also that the relaxation time τ diverges as the form of a power-law: τ∝pch , β=1. 89.40.+k  相似文献   

8.
The metastable states of sodiumnitroprusside are extremely stable at temperatures below 200 K. It is possible to allocate structural changes measured by neutron diffraction to measured spectroscopic parameters, but the amount of the structural change is relatively small for a reaction co-ordinate as the metastable states have an extremely long lifetime. New hypotheses for related systems try to explain such a phenomena in two ways: The first way is a bending of the NO-bond in the metastable state, the second one an exchange of the oxygen and nitrogen atoms in the NO-bond (which can be regarded as an bending). As such changes would be possible also from our density functional calculations, we re-investigated our neutron diffraction data using the new models. However, our results are not compatible with one of these models. On the contrary, the neutron diffraction data show partially opposite tendencies. We compare both models with EXAFS measurements, with vibrational spectroscopic results and the data found by M?ssbauer spectroscopy. We propose a potential scheme for all three states (GS, and ) extracted from absorption and thermodynamic data to explain the electronic and energetic rearrangement, and the population dynamics. Received: 23 June 1997 / Accepted: 13 October 1997  相似文献   

9.
The study of systems with multiple (not necessarily degenerate) metastable states presents subtle difficulties from the mathematical point of view related to the variational problem that has to be solved in these cases. We prove sufficient conditions to identify multiple metastable states. Since this analysis typically involves non-trivial technical issues, we give different conditions that can be chosen appropriately depending on the specific model under study. We show how these results can be used to attack the problem of multiple metastable states via the use of the modern approaches to metastability. We finally apply these general results to the Blume–Capel model for a particular choice of the parameters for which the model happens to have two multiple not degenerate in energy metastable states. We estimate in probability the time for the transition from the metastable states to the stable state. Moreover we identify the set of critical configurations that represent the minimal gate for the transition.  相似文献   

10.
We study the branches of equilibrium states of rigid polymer rods with the Onsager excluded volume potential in two-dimensional space. Since the probability density and the potential are related by the Boltzmann relation at equilibrium, we represent an equilibrium state using the Fourier coefficients of the Onsager potential. We derive a non-linear system for the Fourier coefficients of the equilibrium state. We describe a procedure for solving the non-linear system. The procedure yields multiple branches of ordered states. This suggests that the phase diagram of rigid polymer rods with the Onsager potential has a more complex structure than that with the Maier-Saupe potential. A study of free energy indicates that the first branch of ordered states is stable while the subsequent branches are unstable. However, the instability of the subsequent branches does not mean they are not interesting. Each of these unstable branches, under certain external potential, can be made metastable, and thus may be observed.  相似文献   

11.
The dynamic behavior of a spin-1 Ising system with arbitrary bilinear and biquadratic pair interactions is studied by using the path probability method, and approaches of the system toward the stable or metastable equilibrium states according to the ratio of interaction parameters and rate constants are presented. In particular, we investigate the relaxation of the order parameters for temperatures less than, equal to, and greater than the second-order and first-order phase transitions. From this investigation, the “flatness” property of metastable states is seen explicitly. We also show how a system freezes in a metastable state as well as how it escapes from one metastable state to the other.  相似文献   

12.
A study is presented of the superconducting states in mesoscopic rings. On the basis of self-consistent solution of the Ginzburg-Landau equations, a new kind of vortex states with non-uniform vorticity is found for some cases to be thermodynamically more stable, than the solution with unique winding number for the whole ring. There are indications that the solution with non-uniform vorticity concerns a metastable state of a superconducting mesoscopic ring.  相似文献   

13.
We consider strongly interacting boson-boson mixtures on one-dimensional lattices and, by adopting a qualitative mean-field approach, investigate their quantum phases as the interspecies repulsion is increased. In particular, we analyze the low-energy quantum emulsion metastable states occurring at large values of the interspecies interaction, which are expected to prevent the system from reaching its true ground state. We argue a significant decrease in the visibility of the time-of-flight images in the case of these spontaneously disordered states.  相似文献   

14.
For laser collimation of neutral F atoms, a resonance transition cycle between the metastable and the upper excited states (3s4 P 5/2?3p4 D 0 7/2) can be used as a two-level closed system. We have determined the lifetime of the metastable state (3s4 P 5/2) in F atoms by measuring the decay curve of the fluorescence intensity as a function of distance from the plasma source. Combining the measured velocity of F radicals from the Doppler shift of the fluorescence peak, we have obtained the lifetime of the F metastable state as 3.7±0.5 μs. With this short metastable lifetime of F radicals, the simple Doppler cooling method using spontaneous light force is not practical for laser collimation of F radicals. Use of stimulated light force may be necessary to collimate F radical beams in a short distance. Received: 4 July 2000 / Published online: 13 September 2000  相似文献   

15.
16.
We report on the observation of two types of current driven transitions in metastable vortex lattices. The metastable states, which are missed in usual slow transport measurements, are detected with a fast transport technique in the vortex lattice of undoped 2H-NbSe2. The transitions are seen by following the evolution of these states when driven by a current. At low currents we observe an equilibration transition from a metastable to a stable state, followed by a dynamic crystallization transition at high currents.  相似文献   

17.
For a closed bi-partite quantum system partitioned into system proper and environment we interpret the microcanonical and the canonical condition as constraints for the interaction between those two subsystems. In both cases the possible pure-state trajectories are confined to certain regions in Hilbert space. We show that in a properly defined thermodynamical limit almost all states within those accessible regions represent states of some maximum local entropy. For the microcanonical condition this dominant state still depends on the initial state; for the canonical condition it coincides with that defined by Jaynes' principle. It is these states which thermodynamical systems should generically evolve into. Received 13 June 2002 / Received in final form 14 November 2002 Published online 4 February 2003 RID="a" ID="a"e-mail: jochen@theol.physik.uni-stuttgart.de  相似文献   

18.
We study repeated interactions of the quantized electromagnetic field in a cavity with single two-levels atoms. Using the Markovian nature of the resulting quantum evolution we study its large time asymptotics. We show that, whenever the atoms are distributed according to the canonical ensemble at temperature T>0 and some generic non-degeneracy condition is satisfied, the cavity field relaxes towards some invariant state. Under some more stringent non-resonance condition, this invariant state is thermal equilibrium at some renormalized temperature T *. Our result is non-perturbative in the strength of the atom-field coupling. The relaxation process is slow (non-exponential) due to the presence of infinitely many metastable states of the cavity field.  相似文献   

19.
The critical dynamics of a two-threshold system with the law of conservation of the basic quantity z and in the absence of sink on a scale-free network has been studied. It has been shown that the critical state that is a set of metastable states appears in such a system. The structure of the metastable states is a set of stable clusters of nodes at which the z values are close to the positive and negative threshold values. Avalanches transforming the system from one metastable state to another state appear in the system. The absence of sink is effectively replaced by the annihilation process. The statistics of avalanches in such a system has been analyzed. It has been shown that the self-organized critical state can appear in the system.  相似文献   

20.
In a previous paper this author examined the Born expansion and isolated those parts of the expansion that contribute most significantly to the scattering amplitude for large momentum transfer collisions in inelastic collisions from the ground state of both hydrogen and helium. It turned out that certain terms where the scattering electron interacts once with the nucleus and once with the other electron dominate. The physical reason is that large momentum transfer collisions require the nucleus to take the bulk of the incident momentum but require an interaction with the one of the bound electrons to change the state of the atom. The arguments are quite general and this paper will extend this analysis by comparing the inelastic results obtained by this method for hydrogen and helium to a close coupling calculation with many intermediate states. Further, we will extend this analysis to the correction to the 1st Born result for elastic electron-hydrogen and electron-helium collisions and provide some results for scattering from the initial metastable states of hydrogen for large momentum transfer collisions. A comparison of the results of this analytic approach will be made to the numerical close coupling approach and experiments where available. The agreement is remarkable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号