共查询到20条相似文献,搜索用时 15 毫秒
1.
High-yield bamboo-shaped carbon nanotubes from cresol for electrochemical application 总被引:1,自引:0,他引:1
Lv R Zou L Gui X Kang F Zhu Y Zhu H Wei J Gu J Wang K Wu D 《Chemical communications (Cambridge, England)》2008,(17):2046-2048
High-yield bamboo-shaped carbon nanotubes (BCNTs) have been produced by using cresol as the precursor, for the first time and there are almost no straight CNTs or amorphous carbon found in the product: the role of cresol in promoting the growth of BCNTs is discussed; improved cycle stability and electric conductivity of the BCNTs as an anode additive in a lithium ion battery are achieved. 相似文献
2.
Yuanzhi Song Yang Song Wen Xie Deqing Shi 《Russian Journal of Physical Chemistry A, Focus on Chemistry》2006,80(9):1467-1474
DFT (B3LY/6-31G (d, p) and B3LYP/cc-PVDZ) calculations are performed for deoxidized dopamine (DA(R)) and its oxidized form (DA(O)). The electrochemistry of dopamine (DA) was studied by cyclic voltammetry (CV) at a glassy carbon electrode modified by Nafion
multiwalled carbon nanotubes (MWNTs) in phosphate buffers at pH 5.4, showing that the standard electrode potential of a half
reaction for DA(O), H+/DA(R) is 0.74 V. This experimental standard electrode potential of the half reaction is consistent with those of 0.65 and 0.69
V calculated using the energies of solvation and the sum of the electronic and thermal free energies of DA(R) and DA(O). The frontier orbital theory and Mulliken charges of molecules explain the electrochemical behavior of CV at a modified electrode
well. The effects of oxygen on DA(R) in blood and drug are also discussed according to equilibrium theory. The modified electrode was successful for determination
of the content of pharmaceutical DA.
The text was submitted by the authors in English. 相似文献
3.
Commercially available multiwalled carbon nanotubes (CNTs) were functionalized with a high mass load of 3-aminopropyltriethoxysilane (APTS) to study their behaviors in the cyclic CO(2) adsorption as well as the associated thermodynamic properties. The breakthrough curve showed a fast kinetics of CO(2) adsorption resulting in percentage ratios of working capacity to equilibrium capacity greater than 80%. The adsorption capacity of CNT(APTS) was significantly influenced by the presence of water vapor and reached a maximum of 2.45 mmol/g at a water vapor of 2.2%. The adsorption capacities and the physicochemical properties of CNT(APTS) were preserved through 100 adsorption-desorption cycles displaying the stability of CNT(APTS) during a prolonged cyclic operation. The heat input required to regenerate spent CNT(APTS) was determined, and the result suggests that adsorption process with solid CNT(APTS) is possibly a promising CO(2) capture technology. 相似文献
4.
TiO(2) nanoparticles were homogeneously coated on multiwalled carbon nanotubes (MWCNTs) by hydrothermal deposition, and this nanocomposite might be a promising material for myoglobin (Mb) immobilization in view of its high biocompatibility and large surface. The glassy carbon (GC) electrode modified with Mb-TiO(2)/MWCNTs films exhibited a pair of well-defined, stable and nearly reversible cycle voltammetric peaks. The formal potential of Mb in TiO(2)/MWCNTs film was linearly varied in the range of pH 3-10 with a slope of 48.65 mV/pH, indicating that the electron transfer was accompanied by single proton transportation. The electron transfer between Mb and electrode surface, k(s) of 3.08 s(-1), was greatly facilitated in the TiO(2)/MWCNTs film. The electrocatalytic reductions of hydrogen peroxide were also studied, and the apparent Michaelis-Menten constant is calculated to be 83.10 microM, which shows a large catalytic activity of Mb in the TiO(2)/MWCNTs film to H(2)O(2). The modified GC electrode shows good analytical performance for amperometric determination of hydrogen peroxide. The resultant Mb-TiO(2)/MWCNTs modified glassy carbon electrode exhibited fast amperometric response to hydrogen peroxide reduction, long term life and excellent stability. Finally the activity of the sensor for nitric oxide reduction was also investigated. 相似文献
5.
Structure and properties of the dispersions of multiwalled carbon nanotubes (MWCNTs) in N,N-dimethylacetamide (DMAc) with different dispersing polymers: polyvinylpyrrolidone (PVP), poly(ethyleneoxide), triblock copolymers poly(ethyleneoxide)-b-poly(propyleneoxide)-b-poly(ethyleneoxide) (Pluronic F127 and Pluronic F108), ethylenediamine tetrakis(ethoxylate-b-propoxylate) tetrol, and ethylenediamine tetrakis(propoxylate-b-ethoxylate) tetrol (Tetronic) of different molecular weights were studied. All studied polymers were shown to be able to disperse MWCNT in DMAc, and MWCNT dispersions appear free of aggregates by visual inspection even after 3 months of keeping at room temperature. Dispersions were characterized by UV–VIS absorption spectroscopy and dynamic light scattering measurements. PVP was found to be the best dispersing polymer for MWCNT in DMAc. It was shown that the yield of the dispersed MWCNT and the average particle size of the MWCNT in DMAc depend on the chemical nature, molecular weight of the dispersing polymer, and solvent quality. The difference in dispersive capacity of the studied polymers is attributed to different dispersion mechanisms for PVP (“polymer wrapping” model) and for other studied dispersing polymers (“loose adsorption” model), which have different efficiencies in DMAc. It was revealed that an increase of dispersing polymer (PVP) concentration at the range of 4.7–37.6 g l?1 results in an average particle size enlargement and MWCNT final concentration reduction. 相似文献
6.
V. V. Abalyaeva V. R. Bogatyrenko I. V. Anoshkin O. N. Efimov 《Polymer Science Series B》2010,52(3-4):252-262
Composites based on polyaniline are prepared via the chemical oxidative polymerization of aniline in the presence of multiwalled carbon nanotubes modified by the sorption of the co-oxidants IrC 6 2? and 2,2′-azino-bis(3-ethyl-benzthiazolin-6-sulfonate). The approach used here, in combination with corresponding conditions of polymerization, ensures the synthesis of composite materials with a high morphological homogeneity of the polymer phase. The study of the electrochemical properties of composites (the reversibility of redox transitions and the stability of capacity parameters) indicates that that they are strongly influenced by the morphological features of the polymer coating. The composite prepared with the use of nanotubes modified by 2,2′-azino-bis(3-ethyl-benzthiazolin-6-sulfonate) possesses better electrochemical characteristics. This effect is associated with a closer to perfect morphology of the polymer coating, a coaxial polyaniline shell highly uniform in thickness along the entire length of nanotubes. 相似文献
7.
In this communication, a novel solid-state pH sensor based on WO3/MWNTs nanocomposite electrode will be reported. WO3 nanoparticles were homogeneously coated on vertically aligned MWNTs by magnetron sputtering. Potentiometric pH response of the WO3/MWNTs electrode in Britton–Robinson buffers revealed a linear working range from pH 2 to12 with a slope of about ?41 mV pH?1 and a response time less than 90 s. The stability of the electrode remained over a month. Moreover, the WO3/MWNTs electrode displayed excellent anti-interference property. Compared to conventional pH sensors, the pH sensor based on WO3/MWNTs nanocomposite electrode also showed excellent reproducibility, high stability and superb selectivity. 相似文献
8.
Because of their unique properties, carbon nanotubes and, in particular, multiwalled carbon nanotubes (MWNTs) have been used for the development of advanced composite and catalyst materials. Despite their growing commercial applications and increased production, the potential environmental and toxicological impacts of MWNTs are not fully understood; however, many reports suggest that they may be toxic. Therefore, a need exists to develop protocols for effective and safe degradation of MWNTs. In this article, we investigated the effect of chemical functionalization of MWNTs on their enzymatic degradation with horseradish peroxidase (HRP) and hydrogen peroxide (H(2)O(2)). We investigated HRP/H(2)O(2) degradation of purified, oxidized, and nitrogen-doped MWNTs and proposed a layer-by-layer degradation mechanism of nanotubes facilitated by side wall defects. These results provide a better understanding of the interaction between HRP and carbon nanotubes and suggest an eco-friendly way of mitigating the environmental impact of nanotubes. 相似文献
9.
We report the electrochemistry of amino-functionalized multiwalled carbon nanotubes (MWCNTs-NH2) in the pH range from 0.3 to 6.4 using quantitative cyclic voltammetry (CV) and single entity electrochemistry measurements, making comparison with non-functionalized MWCNTs. CV showed the latter to both catalyze the solvent (water) decomposition and to undergo irreversible electro-oxidation forming oxygen containing surface functionality. The MWCNTs-NH2 additionally undergo an irreversible oxidation to an extent which is dependent on the pH of the solution, reflecting the variable amount of deprotonated amino groups present as a function of pH. Nano-impact experiments conducted at the single particle level confirmed the oxidation of both types of MWCNTs, showing agreement with the CV. The pKa of the amino groups in MWCNTs was determined via both electrochemical methods giving consistent values of ca. 2.5.A new and generic approach to the study of the oxidation of different forms of CNTs is found by using quantitative single entity and ensemble electrochemistry measurements. 相似文献
10.
Sonochemical oxidation of multiwalled carbon nanotubes 总被引:2,自引:0,他引:2
Xing Y Li L Chusuei CC Hull RV 《Langmuir : the ACS journal of surfaces and colloids》2005,21(9):4185-4190
Functionalization of carbon nanotubes (CNTs) is important for enhancing deposition of metal nanoparticles in the fabrication of supported catalysts. A facile approach for oxidizing CNTs is presented using a sonochemical method to promote the density of surface functional groups. This was successfully employed in a previous study [J. Phys. Chem. B 2004, 108, 19255] to prepare highly dispersed, high-loading Pt nanoparticles on CNTs as fuel cell catalysts. X-ray photoelectron spectroscopy (XPS), transmission electron microscopy, cyclic voltammetry, and settling speeds were used to characterize the degree of surface functionalization and coverage. The sonochemical method effectively functionalized the CNTs. A mixture of -C-O-/-C=O and -COO- was observed along with evidence for weakly bound CO at longer treatment times. The integrated XPS C 1s core level peak area ratios of the oxidized-to-graphitic C oxidation states, as well as the atom % oxygen from the O 1s level, showed an increase in peak intensity (attributed to -CO(x)()) with increased sonication times from 1 to 8 h; the increase in C surface oxidation correlated well with the measured atom %. Most of the CNT surface oxidation occurred between 1 and 2 h. The sonochemically treated CNTs were also studied by cyclic voltammetry and settling experiments, and the results were consistent with the XPS observations. 相似文献
11.
Sonication has been widely used in the dispersal of carbon nanotubes (CNTs) in various liquids as well as in their functionalization in aqueous acids. Here, for the first time, we study the sonication of multiwalled CNTs (MWCNTs) in deionized water. Our results indicate an improvement in the aqueous dispersal of MWCNTs as well as an increase in their adhesive interaction with Au substrates. Field emission scanning electron and high-resolution transmission electron microscopies as well as X-ray photoelectron, photoacoustic Fourier transform IR, and Raman spectroscopies have shown this to be due to the production of low concentrations of O-containing functionalizations (alcohol, carbonyl, acid, with the total O concentration being approximately 2%), without damaging the basic CNT structure; this production of functional groups is mirrored by the disappearance of -CH(n) groups existing on the pristine CNTs. These new functional groups are capable of hydrogen bonding, which plays an important role in their aqueous dispersal and enhanced substrate interactions. 相似文献
12.
Pyrene-labeled hydroxypropyl cellulose (HPC-Py) was synthesized through a condensation reaction between hydroxypropyl cellulose (HPC) and 1-pyrenebutyric acid (Py). A hybrid (HPC/MWNTs) of the HPC-Py and multiwalled carbon nanotubes (MWNTs) was prepared through a noncovalent method. Temperature-variable UV-vis spectra indicated that the HPC-Py had a lower critical solution temperature of about 44 degrees C in water. (1)H NMR, UV-vis, Raman, and fluorescence spectra were used to systematically investigate the pi-pi stacking interaction between the HPC-Py and MWNTs. Dispersion experiments showed the HPC/MWNTs hybrids could be well dispersed in water and many organic solvents. 相似文献
13.
Katarzyna Lota Agnieszka Sierczyńska Grzegorz Lota 《Journal of Solid State Electrochemistry》2010,14(12):2209-2212
The paper discusses the efficiency of catalytic synthesis and structure of multi-wall carbon nanotubes obtained by acetylene decomposition over Mm (mischmetal)-based multi-component alloy of AB5 type. Different parameters of catalytic chemical vapor deposition process have an influence on the efficiency. Some of them were changed to obtain the highest amount of carbon material. The samples were purified by acid and were characterized by BET surface area measurements, scanning electron microscopy, and transmission electron microscopy analysis. However, both catalyst and parameters of process (such as the flow rate of acetylene) need further examination to make it cost effective. The capacitance properties of carbon nanotubes as electrode materials for electrochemical capacitors are discussed. It has been shown that carbon nanotubes show moderate values of capacitance. In the form of a network, the material provides good charge propagation and can be used as a support and additive for different composite electrode materials. 相似文献
14.
Optical and electrochemical properties of poly(o-toluidine) multiwalled carbon nanotubes composite Langmuir-Schaefer films 总被引:3,自引:0,他引:3
Bavastrello V Carrara S Ram MK Nicolini C 《Langmuir : the ACS journal of surfaces and colloids》2004,20(3):969-973
Conducting poly(o-toluidine) (POT) with multiwalled carbon nanotubes (MWNTs) nanocomposite (POT-MWNTs) was synthesized by oxidative polymerization. Chloroform solutions of the material were used for the optical characterizations by means of UV-visible spectroscopy and for the fabrication of Langmuir-Schaefer (LS) films. LS films were fabricated at the air-liquid interface by using 0.1 M HCl aqueous solution as the subphase to study the electrochemical properties of the nanocomposite by means of cyclic voltammetry and photoelectrochemical techniques. The optical characterizations gave proof that the presence of MWNTs inside the polymeric matrix produced no change in the (pi-pi*) transition of POT structure, indicating that the polymeric chains were simply wrapped around and not doped by MWNTs. The electrochemical investigations highlighted significant changes in the redox properties of POT-MWNTs LS films with respect to pure POT. The cyclic voltammetric study also revealed high electrochemical stability, confirmed by the estimation of the diffusion coefficient and the photoelectrochemical response of the nanocomposite LS films. This characteristic turned out to be more evident than that obtained in our earlier studied poly(o-anisidine)-MWNTs (POAS-MWNTs) system. 相似文献
15.
16.
17.
18.
Jingfang Wang Shunlong Yang Deyin Guo Ping Yu Dan Li Jianshan Ye Lanqun Mao 《Electrochemistry communications》2009,11(10):1892-1895
This study compares the electrochemical activity of four kinds of carbon materials, i.e. single-walled carbon nanotubes (SWNTs), pristine graphene oxide nanosheets (GONs), chemically reduced GONs, and electrochemically reduced GONs, with potassium ferricyanide (K3Fe(CN)6), β-nicotinamide adenine dinucleotide (NADH) and ascorbic acid (AA) as the redox probes. Cyclic voltammetry (CV) results demonstrate that the electron transfer kinetics of the redox probes employed here at the carbon materials essentially depend on the kind of the materials, of which the redox processes of the probes at SWNTs and electrochemically reduced GONs are faster than those at the pristine and chemically reduced GONs. The different electron transfer kinetics for the redox probes at the carbon materials studied here could be possibly ascribed to the synergetic effects of the surface chemistry (e.g., C/O ratio, presence of quinone-like groups, surface charge, and surface cleanness) and conductivity of the materials. This study could be potentially useful for understanding the structure/property relationship of the carbon materials and, based on this, for screening and synthesizing advanced carbon materials for electrochemical applications. 相似文献
19.
Gao C Jin YZ Kong H Whitby RL Acquah SF Chen GY Qian H Hartschuh A Silva SR Henley S Fearon P Kroto HW Walton DR 《The journal of physical chemistry. B》2005,109(24):11925-11932
An in situ polycondensation approach was applied to functionalize multiwalled carbon nanotubes (MWNTs), resulting in various linear or hyperbranched polycondensed polymers [e.g., polyureas, polyurethanes, and poly(urea-urethane)-bonded carbon nanotubes]. The quantity of the grafted polymer can be easily controlled by the feed ratio of monomers. As a typical example, the polyurea-functionalized MWNTs were measured and characterized in detail. The oxidized MWNTs (MWNT-COOH) were converted into acyl chloride-functionalized MWNTs (MWNT-COCl) by reaction with neat thionyl chloride (SOCl2). MWNT-COCl was reacted with excess 1,6-diaminohexane, affording amino-functionalized MWNTs (MWNT-NH2). In the presence of MWNT-NH2, the polyurea was covalently coated onto the surfaces of the nanotube by in situ polycondensation of diisocyanate [e.g., 4,4'-methylenebis(phenylisocyanate)] and 1,6-diaminohexane, followed by the removal of free polymer via repeated filtering and solvent washing. The coated polyurea content can be controlled to some extent by adjusting the feed ratio of the isocyanato and amino groups. The structure and morphology of the resulting nanocomposites were characterized by FTIR, NMR, Raman, confocal Raman, TEM, EDS, and SEM measurements. The polyurea-coated MWNTs showed interesting self-assembled flat- or flowerlike morphologies in the solid state. The signals corresponding to that of the D and G bands of the carbon nanotubes were strongly attenuated after polyurea was chemically tethered to the MWNT surfaces. Comparative experiments showed that the grafted polymer species and structures have a strong effect on the Raman signals of polymer-functionalized MWNTs. 相似文献
20.