首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The enhancement of emission intensity resulting from the interaction between two laser-induced plasmas on two orthogonal targets was investigated using double pulse laser-induced breakdown spectroscopy (LIBS) at 0.7 Pa, by means of time-resolved spectroscopy and fast photography. The results showed that the interaction between both plasmas improved carbon emission intensity in comparison to a single laser-induced plasma. For all the carbon lines of interest 477.2 nm (CI), 426.7 nm (CII), and 473.4 nm (C2 Swan band head), the intensity enhancement showed a maximum at a delay between lasers in the range from 2 to 5 μs; moreover it increased with the fluence of the first laser. On the other hand, in the case of C2 the intensity enhancement reached a maximum at 5 mm from the target; however it decreased with increasing fluence of the second laser. The largest intensity enhancement found was twofold for atomic species and sixfold for molecular species.  相似文献   

2.
We investigate the influence of sample temperature on the dynamics and optical emission of laser induced plasma for various solid materials. Bulk aluminum alloy, silicon wafer, and metallurgical slag samples are heated to temperature TS  500 °C and ablated in air by Nd:YAG laser pulses (wavelength 1064 nm, pulse duration approx. 7 ns). The plasma dynamics is investigated by fast time-resolved photography. For laser-induced breakdown spectroscopy (LIBS) the optical emission of plasma is measured by Echelle spectrometers in combination with intensified CCD cameras. For all sample materials the temporal evolution of plume size and broadband plasma emission vary systematically with TS. The size and brightness of expanding plumes increase at higher TS while the mean intensity remains independent of temperature. The intensity of emission lines increases with temperature for all samples. Plasma temperature and electron number density do not vary with TS. We apply the calibration-free LIBS method to determine the concentration of major oxides in slag and find good agreement to reference data up to TS = 450 °C. The LIBS analysis of multi-component materials at high temperature is of interest for technical applications, e.g. in industrial production processes.  相似文献   

3.
In this work, the Stark effect is shown to be mainly responsible for wrong elemental allocation by automated laser-induced breakdown spectroscopy (LIBS) software solutions. Due to broadening and shift of an elemental emission line affected by the Stark effect, its measured spectral position might interfere with the line position of several other elements. The micro-plasma is generated by focusing a frequency-doubled 200 mJ pulsed Nd/YAG laser on an aluminum target and furthermore on a brass sample in air at atmospheric pressure. After laser pulse excitation, we have measured the temporal evolution of the Al(II) ion line at 281.6 nm (4s 1 S-3p 1 P) during the decay of the laser-induced plasma. Depending on laser pulse power, the center of the measured line is red-shifted by 130 pm (490 GHz) with respect to the exact line position. In this case, the well-known spectral line positions of two moderate and strong lines of other elements coincide with the actual shifted position of the Al(II) line. Consequently, a time-resolving software analysis can lead to an elemental misinterpretation. To avoid a wrong interpretation of LIBS spectra in automated analysis software for a given LIBS system, we recommend using larger gate delays incorporating Stark broadening parameters and using a range of tolerance, which is non-symmetric around the measured line center. These suggestions may help to improve time-resolving LIBS software promising a smaller probability of wrong elemental identification and making LIBS more attractive for industrial applications.  相似文献   

4.
In acetate buffer medium palladium(II) ions form with promazine hydrochloride (PM) two complexes: an orange one of a formula [Pd(C17H20N2S)]2+max = 460 nm, ε = 4.5 × 103, at 20 °C and pH = 2) and a violet one of a formula [Pd(C17H20N2S)2]2+max = 540 nm, ε = 8.8 × 103 at 20 °C and pH = 2).The values for instability constants determined by Bjerrum's method amount to pK1 = 3.95; pK2 = 3.07; pβ1 = 3.95; pβ2 = 7.02, respectively.A colorimetric method of the determination of palladium(II) has been elaborated. The method consists in a measurement of the absorbance of the violet complex of palladium(II) with promazine hydrochloride at λ = 540 nm. The method permits the determination of 2–17 μg Pd/ml with an error of ±2%. The time of the determination is 20 min. Iron(III), Ce(IV), Pt(IV), V(V), Cr(VI), and HNO3 interfere with the determination.  相似文献   

5.
The temporal evolution and spatial distribution of C2 molecules produced by laser ablation of a graphite target is studied using optical emission spectroscopy, dynamic imaging and laser-induced fluorescence (LIF) investigations. We observe peculiar bifurcation of carbon plume into two parts; stationary component close to the target surface and a component moving away from the target surface which splits further in two parts as the plume expands. The two distinct plumes are attributed to recombination of carbon species and formation of nanoparticles. The molecular carbon C2 moves with a faster velocity and dies out at ~ 800 ns whereas the clusters of nanoparticle move with a slower velocity due to their higher mass and can be observed even after 1600 ns. C2 molecules in the d3Πg state were probed for laser-induced fluorescence during ablation of graphite using the Swan (0,0) band at 516.5 nm. The fluorescence spectrum and images of fluorescence d3Πg − a3Πu(0,1)(λ = 563.5 nm) are recorded using a spectrograph attached to the ICCD camera. To get absolute ground state C2 density from fluorescence images, the images are calibrated using complimentary absorption experiment. This study qualitatively helps to get optimum conditions for nanoparticle formation using the laser ablation of graphite target and hence deducing optimum conditions for thin film deposition.  相似文献   

6.
Although a high heterogeneity of composition is awaited for humic substances, their complexation properties do not seem to greatly depend on their origins. The information on the difference in the structure of these complexes is scarce. To participate in the filling of this lack, a study of the spectral and temporal evolution of the Eu(III) luminescence implied in humic substance (HS) complexes is presented. Seven different extracts, namely Suwannee River fulvic acid (SRFA) and humic acid (SRHA), and Leonardite HA (LHA) from the International Humic Substances Society (USA), humic acid from Gorleben (GohyHA), and from the Kleiner Kranichsee bog (KFA, KHA) from Germany, and purified commercial Aldrich HA (PAHA), were made to contact with Eu(III). Eu(III)-HS time-resolved luminescence properties were compared with aqueous Eu3+ at pH 5. Using an excitation wavelength of 394 nm, the typical bi-exponential luminescence decay for Eu(III)-HS complexes is common to all the samples. The components τ1 and τ2 are in the same order of magnitude for all the samples, i.e., 40 ≤ τ1 (μs) ≤ 60, and 145 ≤ τ2 (μs) ≤ 190, but significantly different. It is shown that different spectra are obtained from the different groups of samples. Terrestrial extract on the one hand, i.e. LHA/GohyHA, plus PAHA, and purely aquatic extracts on the other hand, i.e., SRFA/SRHA/KFA/KHA, induce inner coherent luminescent properties of Eu(III) within each group. The 5D0 → 7F2 transition exhibits the most striking differences. A slight blue shift is observed compared to aqueous Eu3+ (λmax = 615.4 nm), and the humic samples share almost the same λmax ≈ 614.5 nm. The main differences between the samples reside in a shoulder around λ ≈ 612.5 nm, modelled by a mixed Gaussian–Lorentzian band around λ ≈ 612 nm. SRFA shows the most intense shoulder with an intensity ratio of I612.5/I614.7 = 1.1, KFA/KHA/SRHA share almost the same ratio I612.5/I614.7 = 1.2–1.3, whilst the LHA/GohyHA/PAHA group has a I612.5/I614.5 = 1.5–1.6. This shows that for the two groups of complexes, despite comparable complexing properties, slightly different symmetries are awaited.  相似文献   

7.
We compared the binding affinity of 6-propyl-2-thiouracil (PTU) with native and destabilized human serum albumin (HSA) as a model to assess the binding ability of albumin in patients suffering from chronic liver or renal diseases. Urea (U) and guanidine hydrochloride (Gu·HCl) at a concentration of 3.0 M were used as denaturation agents.Increasing the concentration of PTU from 0.8 × 10−5 to 1.20 × 10−4 M in the systems with HSA causes a decrease in fluorescence intensity of the protein excited with both 280 and 295 nm wavelengths. The results indicate that urea and Gu·HCl bind to the carbonyl group and then to the NH-group. To determine binding constants we used the Scatchard plots. The presence of two classes of HSA–PTU binding sites was observed. The binding constants (Kb) are equal to 1.99 × 104 M−1 and 1.50 × 104 M−1 at λex = 280 nm, 5.20 × 104 M−1 and 1.65 × 104 M−1 at λex = 295 nm. At λex = 280 nm the number of drug molecules per protein molecule is aI = 1.45 and aII = 1.32 for I and II binding sites, respectively. At λex = 295 nm they are aI = 0.63 and aII = 1.54 for the I and II binding sites.The estimation of the binding ability of changed albumin in the uremic and diabetic patients suffering from chronic liver or renal diseases is very important for safety and effective therapy.  相似文献   

8.
Yatirajam V  Ram J 《Talanta》1974,21(12):1308-1311
A simple and rapid spectrophotometric determination of molybdenum is described. The molybdenum thiosulphate complex is extracted into isoamyl alcohol from 1·0–1·5M hydrochloric acid containing 36–40 mg of Na2S2O3·5H2O per ml. The absorbance at λmax = 475 nm obeys Beer's law over the range 0–32 μg of Mo per ml of solvent phase. Up to 5 mg/ml of Ti(IV), V(V), Cr(VI), Fe(III), Co(II), Ni(II), U(VI), W(VI), Sb(III), 1 mg/ml of Cu(II), Sn(II), Bi(V) and 10 μg/ml of Pt(IV) and Pd(II) do not interfere. Large amounts of complexing agents interfere. The method has been applied to analysis of synthetic and industrial samples.  相似文献   

9.
The coupled-cluster singles-doubles-approximate-triples [CCSD(T)] theory in combination with the correlation-consistent quintuple basis set (aug-cc-pV5Z) is used to investigate the spectroscopic properties of the CH(X2Π) radical. The accurate adiabatic potential energy curve is calculated over the internuclear separation ranging from 0.07 to 2.45 nm and is fitted to the analytic Murrell–Sorbie function, which is employed to determine the spectroscopic parameters, ωeχe, αe and Be. The present De, Re, ωe, ωeχe, αe and Be values are of 3.6261 eV, 0.11199 nm, 2856.312 cm−1, 64.9321 cm−1, 0.5452 cm−1 and 14.457 cm−1, respectively. Excellent agreement is obtained when they are compared with the available measurements. With the potential obtained at the CCSD(T)/aug-cc-pV5Z level of theory, a total of 18 vibrational states is predicted when J = 0 by numerically solving the radial Schrödinger equation of nuclear motion. The complete vibrational levels, classical turning points, inertial rotation and centrifugal distortion constants are reproduced for the CH(X2Π) radical when J = 0 for the first time, which are in good agreement with the available RKR data.  相似文献   

10.
A new spectrofluorimetric method for the determination of ruthenium with nonfluorescent 2-(α-pyridyl) thioquinaldinamide (PTQA) is described. The oxidative reaction of Ru(III) upon PTQA gives oxidised fluorescent product (λex(max)=347 nm; λem(max)=486 nm). The sensitivity of the fluorescence reaction between ruthenium and PTQA is greatly increased in the presence of Fe (III). The reaction is carried out in the acidity range 0.01–0.075 M H2SO4. The influence of reaction variables is discussed. The range of linearity is 1–400 μg l−1 Ru(III). The standard deviation and relative standard deviation of the developed method are ±1.210 μg l−1 Ru (III) and 2.4%, respectively (for 11 replicate determinations of 50 μg l−1 Ru (III)). The effect of interferences from other metal ions, anions and complexing agents was studied; the masking action is discussed. The developed method has been successfully tested over synthetic mixtures of various base metals and platinum group metals, synthetic mixtures corresponding to osmiridium, certified reference materials in spiked conditions and rock samples.  相似文献   

11.
The kinetics of sublimation of bis(2,2,6,6-tetramethyl-3,5-heptanedionato)copper(II), [Cu(tmhd)2] was studied by non-isothermal and isothermal thermogravimetric (TG) methods. The non-isothermal sublimation activation energy values determined following the procedures of Friedman, Kissinger, and Flynn–Wall methods yielded 93 ± 5, 67 ± 2, and 73 ± 4 kJ mol−1, respectively and the isothermal sublimation activation energy was found to be 97 ± 3 kJ mol−1 over the temperature range of 375–435 K. The dynamic TG run proved the complex to be completely volatile and the equilibrium vapor pressure (pe)T of the complex over the temperature range of 375–435 K determined by a TG-based transpiration technique, yielded a value of 96 ± 2 kJ mol−1 for its standard enthalpy of sublimation (ΔsubH°).  相似文献   

12.
The exposure and accessibility of the tryptophan residues in the chitooligosaccharide-specific pumpkin (Cucurbita maxima) phloem exudate lectin (PPL) have been investigated by fluorescence spectroscopy. The emission λmax of native PPL, seen at 338 nm was red-shifted to 348 nm upon denaturation by 6 M Gdn.HCl in the presence of 10 mM β-mercaptoethanol, indicating near complete exposure of the tryptophan residues to the aqueous medium, whereas a blue-shift to 335 nm was observed in the presence of saturating concentrations of chitotriose, suggesting that ligand binding leads to a decrease in the solvent exposure of the tryptophan residues. The extent of quenching was maximum with the neutral molecule, acrylamide whereas the ionic species, iodide and Cs+ led to significantly lower quenching, which could be attributed to the presence of charged amino acid residues in close proximity to some of the tryptophan residues. The Stern–Volmer plot for acrylamide was linear for native PPL and upon ligand binding, but became upward curving upon denaturation, indicating that the quenching occurs via a combination of static and dynamic mechanisms. In time-resolved fluorescence experiments, the decay curves could be best fit to biexponential patterns, for native protein, in the presence of ligand and upon denaturation. In each case both lifetimes systematically decreased with increasing acrylamide concentrations, indicating that quenching occurs predominantly via a dynamic process.  相似文献   

13.
The spectrofluorometric study was made of the complex 1,4-diaminoanthraquinone-Ca in aqueous sulfuric mediums [λmax,ex = 410 nm; λmax,em = 580 nm; 50% H2O; stable for at least 4 hr; range temperature OPTIMUM = 20–35 °C; [R]optimum = 2 × 10−4M; stoichiometry 2:1 (fluorescent complex) and 1:1 (no fluorescent complex)]. A new method for the spectrofluorometric determination of Ca traces is proposed for concentrations between 150 and 400 ppb. The relative error and the interferences of the method have been investigated.  相似文献   

14.
In this paper, we describe organic surface modification and functionalization of a hafnia substrate, which has been extensively investigated as a replacement of the gate insulting SiO2 layer in field effect transistors. The surface state of the hafnia was assessed by water contact angle (θwater) measurement with comparison to that of the silicone during the layer-by-layer (LBL) deposition of poly(allyamine hydrochloride) (PAH)/poly(styrene sulfonate) (PSS) bilayers by means of the spin-coating electrostatic self-assembly, SCESA, method. The surface state of virgin hafnia (θwater = 73 ± 1°) turned hydrophilic (θwater = 8 ± 2°) after submission to the standard RCA cleaning process of silicon. The thickness of the multilayer films on the cleaned hafnia surface was found to grow linearly with an increase in the number of PAH/PSS bilayers (d = 2.2 ± 0.1 nm), indicating the consistency in the formation of uniform films. The average water contact angle of the PAH and PSS layers on hafnia alternately switched between 36.0 ± 0.7° and 29.7 ± 0.4° during the nine deposition cycles. The analysis of the surface topography by means of atomic force microscopy (AFM) indicated that the surface roughness of the first PAH layer deposited on the hafnia was strongly smoothed from 1.54 to 0.44 nm with increasing the LBL deposition of polyelectrolytes.  相似文献   

15.
To date only a small number of studies have investigated the chemical speciation of complexes and the fluorescence properties of metal ions whose emitted fluorescence lifetime is in the range of only few nanoseconds. This is due to a lack of advanced methods which allow the conduction of these measurements. In the current study we set up a new time-resolved laser fluorescence spectroscopy system with which the fluorescence properties of metal ions with very short fluorescence lifetimes such as uranium(IV) and its compounds can be investigated. By studying the fluorescence properties of uranium(IV) in perchloric acid, we showed uranium(IV) to have a detection limit of 5 × 10−7 M and a fluorescence decay time of 2.74 ± 0.36 ns. We further investigated the fluorescence properties of uranium(IV) during the reaction with fluoride and applied our novel laser system to study the complexation of uranium(IV) with fluoride.Our data revealed the formation of a 1:1 complex of uranium(IV) and fluoride. The corresponding complex formation constant of uranium(IV) fluoride UF3+ was found to be log β0 = 9.43 ± 1.94. Our results demonstrate that our novel time-resolved laser fluorescence spectroscopy system can successfully conduct speciation measurements of metal ions and their compounds with very short-lived fluorescence lifetimes. Using this laser system, it is possible to analytically investigate such elements and compounds in environmentally relevant concentration ranges.  相似文献   

16.
Absorption spectrum of mercury dissolved in hexane and heptane in the region 280–180 nm was found to consist of three bands. These bands were assigned to the 1S0 → 1P1 transition (A band, λ = 254 nm), to the 1S0 → 3P2 transition (B band, λ = 226 nm) and to the 1S0 → 1P1 transition (C band, λ = 190 nm) of a mercury atom placed into a liquid cell. The B and C absorption bands of mercury in liquid solutions were observed for the first time. It was found that the A band and the C band have, respectively, distinct doublet and triplet structure, while the doublet structure of the B band is only slightly seen. The oscillator strengths of all three bands of mercury in solutions were estimated. The structure of the C, A and B bands of mercury in solutions most probably results from the removal of the degeneracy of the excited states 1P1, 3P1 and 3P2 of a mercury atom, placed into a cell of low symmetry.  相似文献   

17.
This paper reports studies on time-resolved laser induced breakdown spectroscopy (LIBS) of plasmas induced by IR nanosecond laser pulses on the titanium oxides TiO and TiO2 (anatase). LIBS excitation was performed using a CO2 laser. The laser-induced plasma was found strongly ionized yielding Ti+, O+, Ti2 +, O2 +, Ti3 +, and Ti4 + species and rich in neutral titanium and oxygen atoms. The temporal behavior of specific emission lines of Ti, Ti+, Ti2 + and Ti3 + was characterized. The results show a faster decay of Ti3 + and Ti2 + ionic species than that of Ti+ and neutral Ti atoms. Spectroscopic diagnostics were used to determine the time-resolved electron density and excitation temperatures. Laser irradiation of TiO2-anatase induces on the surface sample the polymorphic transformation to TiO2-rutile. The dependence on fluence and number of irradiation pulses of this transformation was studied by micro-Raman spectroscopy.  相似文献   

18.
Calibration-free laser-induced breakdown spectroscopy (CF-LIBS) method is employed for quantitative determination of oxide concentrations in multi-component materials. Industrial oxide materials from steel industry are laser ablated in air, and the optical plasma emission is collected by spectrometers and gated detectors. The temperature and electron number density of laser-induced plasma are determined from measured LIBS spectra. Emission lines of aluminium (Al), calcium (Ca), iron (Fe), manganese (Mn), magnesium (Mg), silicon (Si), titanium (Ti), and chromium (Cr) of low self-absorption are selected, and the concentration of oxides CaO, Al2O3, MgO, SiO2, FeO, MnO, TiO2, and Cr2O3 is calculated by CF-LIBS analysis. For all sample materials investigated, we find good match of calculated concentration values (C CF) with nominal concentration values (C N). The relative error in oxide concentration, e r = |C CF − C N|/C N, decreases with increasing concentration and it is e r ≤ 100% for concentration C N ≥ 1 wt.%. The CF-LIBS results are stable against fluctuations of experimental parameters. The variation of laser pulse energy over a large range changes the error by less than 10% for major oxides (C N ≥ 10 wt.%). The results indicate that CF-LIBS method can be employed for fast and stable quantitative compositional analysis of multi-component materials.  相似文献   

19.
The CH radical production induced by 193 nm two-photon photolysis of CHCl3 has been measured for the first time via the cavity ring-down absorption spectroscopy of its A–X bands, using a commercial nanosecond pulsed dye laser. The range of pressure and laser intensity, as well as the time window detection, have been carefully chosen to ensure a constant CH number density during the measurement and to avoid post-photolysis reactivity. Internal energy distribution of the CH(X2II) fragment has been derived from population distribution simulations, leading to an average vibrational temperature Tvib = 1900 ± 50 K and rotational temperature Trot = 300 ± 20 K. Two competing mechanisms can be invoked for the CH production channel: either two-photon absorption via resonant excited states of CHCl3 leading to dissociation of excited CHCl3, or two-photon sequential dissociation via the formation of the vibrationally excited CHCl2 fragment. The latter mechanism is proposed to be the prominent process for CH formation.  相似文献   

20.
To evaluate the contribution of local pulsed heating of light-absorbing microregions to biochemical activity, irradiation of Escherichia coli was carried out using femtosecond laser pulses (λ = 620 nm, τp=3 × 10−13 s, fp = 0.5 Hz, Ep = 1.1 × 10−3J cm−2, Iav = 5.5 × 10−4 W cm−2, Ip = 109 W cm−2) and continuous wave (CW) laser radiation (λ = 632.8 nm, I = 1.3 W cm−2). The irradiation dose required to produce a similar biological effect (a 160%–190% increase in the clonogenic activity of the irradiated cells compared with the non-irradiated controls) is a factor of about 103 lower for pulsed radiation than for CW radiation (3.3 × 10−1 and 7.8 × 102 J cm−2 respectively). The minimum size of the microregions transiently heated on irradiation with femtosecond laser pulses is estimated to be about 10 Å, which corresponds to the size of the chromophores of hypothetical primary photoacceptors—respiratory chain components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号