首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As applications for laser-induced breakdown spectroscopy (LIBS) become more varied with a greater number of field and industrial LIBS systems developed and as the technique evolves to be more quantitative that qualitative, there is a more significant need for LIBS systems capable of analysis with the use of a single laser shot. In single-shot LIBS, a single laser pulse is used to form a single plasma for spectral analysis. In typical LIBS measurements, multiple laser pulses are formed and collected and an ensemble-averaged method is applied to the spectra. For some applications there is a need for rapid chemical analysis and/or non-destructive measurements; therefore, LIBS is performed using a single laser shot. This article reviews in brief several applications that demonstrate the applicability and need for single-shot LIBS.  相似文献   

2.
Ultraviolet pulses (266 nm) delivered by a quadrupled Nd:YAG laser were used to analyze organic samples with laser-induced breakdown spectroscopy (LIBS). We present characteristics of the spectra obtained from organic samples with special attentions on the emissions of organic elements, O and N, and molecular bonds CN. The choice of these atomic or molecular species is justified on one hand, by the importance of these species to specify organic or biological materials; and on the other hand by the possible interferences with ambient air when laser ablation takes place in the atmosphere. Time-resolved LIBS was used to determine the time-evolution of line intensity emitted from these species. We demonstrate different kinetic behaviors corresponding to different origins of emitters: native atomic or molecular species directly vaporized from the sample or those generated through dissociation or recombination due to interaction between laser-induced plasma and air molecules. Our results show the ability of time-resolved UV-LIBS for detection and identification of native atomic or molecular species from an organic sample.  相似文献   

3.
A quantitative comparison of the performance of four different laser-induced breakdown spectroscopy detection systems is presented. The systems studied are an intensified photodiode array coupled with a Czerny–Turner spectrometer, an intensified CCD coupled with a Czerny–Turner spectrometer, an intensified CCD coupled to an Echelle spectrometer, and a prototype multichannel compact CCD spectrometer system. A simple theory of LIBS detection systems is introduced, and used to define noise-equivalent spectral radiance and noise-equivalent integrated spectral radiance for spectral detectors. A detailed characterization of cathode noise sources in the intensified systems is presented.  相似文献   

4.
Laser-induced breakdown spectroscopy (LIBS) has been applied to analyze trace elements contained in fresh vegetables. A quadrupled Nd:YAG laser is used in the experiments for ablation. Analyzed samples come from local markets and represent frequently consumed vegetables. For a typical root vegetable, such as potato, spectral analysis of the plasma emission reveals more than 400 lines emitted by 27 elements and 2 molecules, C2 and CN. Among these species, one can find trace as well as ultra-trace elements. A space-resolved analysis of several trace elements with strong emissions is then applied to typical root, stem and fruit vegetables. The results from this study demonstrate the potential of an interesting tool for botanical and agricultural studies as well for food quality/safety and environment pollution assessment and control.  相似文献   

5.
Samples taken from the liquid slag layer in a vacuum degasser station of a steel works are analyzed after solidification by laser-induced breakdown spectroscopy (LIBS) without any further sample preparation. The mass fractions of the major components of the vacuum slags are in the range of 50–60% for CaO, 0.5–12% for SiO2 and 20–40% for Al2O3. The species are distributed heterogeneously in the solid samples having diameters of 35 mm. Furthermore the color and structure of the samples is varying significantly. A fast spatial averaging of representative sample areas is realized by spatial laser beam shaping. Multivariate calibration and its validation is carried out with calibration and validation sets of production samples which are analyzed by X-ray fluorescence measurements or as borate beads for reference. The laser-induced breakdown spectroscopy instrument is installed in the steel works at a distance of about 10 m from the vacuum degasser. The laser-induced breakdown spectroscopy analysis runs automatically after the sample placement and it takes 80 s including data transfer to the host computer of the steel works. Operational tests are carried out to demonstrate the feasibility of a fast slag analysis in the harsh environment of the vacuum degasser plant.  相似文献   

6.
This paper investigates the optimization of double-pulse collinear femtosecond laser-induced breakdown spectroscopy (FLIBS) for silicon. Double-pulse FLIBS signal enhancements were observed over an extended range of sample focal plane position compared to single pulse FLIBS. The FLIBS signal intensity was studied as a function of pulse energy, inter-pulse delay (0 ps‑80 ps) and sample position. Correlation between crater volume and signal intensity was measured over a limited range of the sample focal plane position. It was found that double-pulse FLIBS is superior to single pulse for certain focal plane positions.  相似文献   

7.
The high sensitivity of laser-induced breakdown spectroscopy (LIBS) for the detection of most of the fly ash components enables the analysis of these residues produced during the combustion of coal. Fly ash consists of oxides (SiO2, Al2O3, Fe2O3, CaO…) and unburnt carbon which is the major determinant of combustion efficiency in coal fired boilers. For example, an excessive amount of residual carbon dispersed in the fly ash means a significant loss of energy (Styszko et al., 2004 [1]). Standard methods employed for the analysis of fly ash make not possible a control of boiler in real time. LIBS technique can significantly reduce the time of analysis, in some cases even an online detection can be performed. For this reason, some studies have been addressed in order to demonstrate the capability of the laser-induced breakdown spectroscopy technique for the detection of carbon content in high pressure conditions typical of thermal power plants (Noda et al., 2002 [2]) and for the monitoring of unburnt carbon for the boiler control in real time (Kurihara et al., 2003[3]).In particular, the content of unburnt carbon is a valuable indicator for the control of fly ash quality and for the boiler combustion. Depending on this unburnt carbon content, fly ash can be disposed as an industrial waste or as a raw material for the production of concrete in the construction sector. In this study, analyses were performed on specimens of various forms of preparation. Pressed pellets were prepared with two different binders. Presented results concern the nature and amount of the binder used to pelletize the powder, and the laser-induced breakdown spectroscopy parameters and procedure required to draw calibration curves of elements from the fly ash. Analysis “on tape” was performed in order to establish the experimental conditions for the future “online analysis”.  相似文献   

8.
Several studies have appeared in the past two years reporting that the continuum emission produced by the laser ablation of solid materials is strongly polarized. In a paper that appears to conflict with these findings, Asgill et al. report that they did not observe a significant amount of polarization produced by nanosecond laser excitation of nitrogen gas and laser ablation of copper and steel ( M.E. Asgill, H.Y. Moon, N. Omenetto, D.W. Hahn, Investigation of polarization effects for nanosecond laser-induced breakdown spectroscopy, Spectrochim. Acta Part B (2010) xxx-xxx [7]). Here we show that the apparent discrepancy is resolved when laser fluence and polarization are taken into account. Using a 532 nm Nd:YAG laser to ablate Al samples in air, we find that the degree of polarization, P, of the continuum is greater for s- vs. p-polarized excitation and that P decreases with increasing fluence. We show that P would be < 10% under the conditions of Asgill et al., whereas P > 60% is obtained at low fluences with s-polarized excitation. We also confirm that at high fluence the polarization of the discrete emission is much smaller than that of the continuum.  相似文献   

9.
A significant parameter to monitor the status of concrete buildings like bridges or parking garages is the determination of the depth profile of the chlorine concentration below the exposed concrete surface. This information is required to define the needed volume of restoration for a construction. Conventional methods like wet chemical analysis are time- and cost-intensive so an alternative method is developed using laser-induced breakdown spectroscopy (LIBS). The idea is to deploy LIBS to analyze drill cores by scanning the sample surface with laser pulses. Chlorine spectral lines in the infrared (IR) and ultraviolet (UV)-range were studied for chlorine detection in hydrated cement samples. The excitation energies of these spectral lines are above 9.2 eV. Hence high plasma temperatures and pulse energies in the range of some hundred millijoules are needed to induce sufficient line intensity levels at the required working distance. To further increase the line intensity and to lower the detection limit (LOD) of chlorine a measuring chamber is used where different ambient pressures and gases can be chosen for the measurements. The influences on the line intensity for pressures between 5 mbar and 400 mbar using helium as process gas and the influence of different laser burst modi like single and collinear double pulses are investigated. For the first time a LOD according to DIN 32 645 of 0.1 mass% was achieved for chlorine in hydrated cement using the UV line 134.72 nm.  相似文献   

10.
In most instances, laser-induced breakdown spectroscopy (LIBS) spectra are obtained through analog accumulation of multiple shots in the spectrometer CCD. The average acquired in the CCD at a given wavelength is assumed to be a good representation of the population mean, which in turn is implicitly regarded to be the best estimator for the central value of the distribution of the spectrum at the same wavelength. Multiple analog accumulated spectra are taken and then in turn averaged wavelength-by-wavelength to represent the final spectrum. In this paper, the statistics of single-shot and analog accumulated LIBS spectra of both solids and liquids were examined to evaluate whether the spectrum averaging approach is statistically defensible. At a given wavelength, LIBS spectra are typically drawn from a Frechet extreme value distribution, and hence the mean of an ensemble of LIBS spectra is not necessarily an optimal summary statistic. Under circumstances that are broadly general, the sample mean for LIBS data is statistically inconsistent and the central limit theorem does not apply. This result appears to be due to very high shot-to-shot plasma variability in which a very small number of spectra are high in intensity while the majority are very weak, yielding the extreme value form of the distribution. The extreme value behavior persists when individual shots are analog accumulated. An optimal estimator in a well-defined sense for the spectral average at a given wavelength follows from the maximum likelihood method for the extreme value distribution. Example spectra taken with both an Echelle and a Czerny–Turner spectrometer are processed with this scheme to create smooth, high signal-to-noise summary spectra. Plasma imaging was used in an attempt to visually understand the observed variability and to validate the use of extreme value statistics. The data processing approach presented in this paper is statistically reliable and should be used for accurate comparisons of LIBS spectra instead of arithmetic averaging on either complete or censored data sets.  相似文献   

11.
The application of laser-induced breakdown spectroscopy (LIBS) to aerosol systems has been shown to provide quantitative analysis of particle-derived species; however, the exact nature of the plasma/particle interactions remains to be fully understood. Although the plasma/particle interaction may be idealized within a framework of instantaneous vaporization and analyte diffusion throughout the plasma volume, experimental evidence suggests that these processes actually occur on finite time scales relative to the plasma decay times at which measurements are frequently taken. In the present work, a numerical simulation of the temperature and species concentration fields of a plasma containing a single particle, including dissociation and diffusion on semi-empirical finite time scales, is developed. Using these results, the intensity of analyte emission is calculated as a function of time, and the standard ion/neutral ratios typical of aerosol-derived LIBS signals are calculated. Furthermore, the ratio of ion/neutral ratios for two different species was used to assess the temperature homogeneity of the particle-derived analytes in comparison to the overall plasma temperature field. From this numerical study, it is shown that the finite time scale of evaporation and diffusion of aerosol material results in a non-uniform spatial distribution in concentration. This results, in turn, in temperature and free electron density gradients within the plasma, leading to variation between the local conditions surrounding aerosol mass and the bulk conditions of the plasma as a whole.  相似文献   

12.
The enhancement of emission intensity resulting from the interaction between two laser-induced plasmas on two orthogonal targets was investigated using double pulse laser-induced breakdown spectroscopy (LIBS) at 0.7 Pa, by means of time-resolved spectroscopy and fast photography. The results showed that the interaction between both plasmas improved carbon emission intensity in comparison to a single laser-induced plasma. For all the carbon lines of interest 477.2 nm (CI), 426.7 nm (CII), and 473.4 nm (C2 Swan band head), the intensity enhancement showed a maximum at a delay between lasers in the range from 2 to 5 μs; moreover it increased with the fluence of the first laser. On the other hand, in the case of C2 the intensity enhancement reached a maximum at 5 mm from the target; however it decreased with increasing fluence of the second laser. The largest intensity enhancement found was twofold for atomic species and sixfold for molecular species.  相似文献   

13.
We report what we believe to be the first demonstration of the detection of trace quantities of helium and argon in binary and ternary gas mixtures with nitrogen by laser-induced breakdown spectroscopy (LIBS). Although significant quenching of helium transitions due to collisional deactivation of excited species was observed, it was found that losses in analytical sensitivity could be minimized by increasing the laser irradiance and decreasing the pressure at which the analyses were performed. In consequence, limits of detection of parts-per-million and tens of parts-per-million and linear dynamic ranges of several orders of magnitude in analyte concentration were obtained. The results of this study suggest that LIBS may have potential applications in the detection of other noble gases at trace concentrations.  相似文献   

14.
The temporal evolution of the Si atomic emission signal produced from individual silica microspheres in an aerosolized air stream was investigated using laser-induced breakdown spectroscopy (LIBS). Specifically, the temporal evolution of Si emission from 2.47 and 4.09-micrometer-sized particles is evaluated over discrete delay times ranging from 15 to 70 µs following plasma initiation. The analyte signal profile from the microspheres, taken as the silicon atomic emission peak-to-continuum ratio, was observed to follow the same profile of silicon-rich nanoparticles over the range of delay times. The ratio of analyte signals for the 2.47 and 4.09-micrometer particles was observed to be approximately constant with plasma decay time and less than the expected mass ratio, leading to the conclusion that further vaporization and enhanced analyte response do not continue with increasing delay times for these microsphere sizes. While recent research suggests that the temporal component of analyte response is important for quantitative LIBS analysis, the current study does confirm earlier research demonstrating an upper size limit for quantitative aerosol particle analysis in the diameter range of 2 to 2.5 µm for silica microspheres.  相似文献   

15.
Laser-induced breakdown spectroscopy (LIBS) provides an alternative chemical analytical technique that obviates the issues of sample preparation and sample destruction common to most laboratory-based analytical methods. This contribution explores the capability of LIBS analysis to identify carbonate and silicate minerals rapidly and accurately. Fifty-two mineral samples (18 carbonates, 9 pyroxenes and pyroxenoids, 6 amphiboles, 8 phyllosilicates, and 11 feldspars) were analyzed by LIBS. Two composite broadband spectra (averages of 10 shots each) were calculated for each sample to produce two databases each containing the composite LIBS spectra for the same 52 mineral samples. By using correlation coefficients resulting from the regression of the intensities of pairs of LIBS spectra, all 52 minerals were correctly identified in the database. If the LIBS spectra of each sample were compared to a database containing the other 51 minerals, 65% were identified as a mineral of similar composition from the same mineral family. The remaining minerals were misidentified for two reasons: 1) the mineral had high concentrations of an element not present in the database; and 2) the mineral was identified as a mineral with similar elemental composition from a different family. For instance, the Ca–Mg carbonate dolomite was misidentified as the Ca–Mg silicate diopside. This pilot study suggests that LIBS has promise in mineral identification and in situ analysis of minerals that record geological processes.  相似文献   

16.
The problem of finding new methods for the analysis of precious alloys has stimulated, in recent years, a number of different proposals for improving the analytical procedures introducing more robust calibration (or calibration-free) methods. In the paper “Accurate quantitative analysis of gold alloys using multi-pulse laser-induced breakdown spectroscopy and a correlation-based calibration method” by G. Galbács, N.Jedinski, G.Cseh, Z. Galbács and L. Túri [Spectrochimica Acta Part B, Volume 63, Issue 5, 591–597 (May 2008)] the authors proposed the use of multiple-pulse LIBS and a correlation-based method for building calibration curves for quantitative analysis of gold alloys. The method is proposed for gold alloys prepared using a fixed proportion of the alloying element. The general case where the relative concentration of the elements of the matrix is not a priori known is not discussed in the paper. In this communication, we will demonstrate that the method proposed is extremely fragile against matrix effects, and therefore cannot be usefully applied for the purpose of actual analytical measurements on gold alloys without a previous knowledge of the matrix composition.  相似文献   

17.
Laser-induced breakdown spectroscopy (LIBS) has been used to identify the differences or similarities between crude oil and fuel residues. Firstly, a man portable LIBS analyzer was used for the on-site environmental control and analysis of the oil spill from The Prestige. An exhaustive analysis of crude oil and oil spill residues (collected during the field campaign in the Galician Coast) was performed in the laboratory. Characteristics elements in petroleum such as C, H, N, O, Mg, Na, Fe and V were detected. In addition, contributions from Ca, Si and Al in the composition of residues have been found. The use of intensity ratios of line and band emissions in the original fuel (crude oil) and in the aged residues allowed a better characterization of the samples than the simple use of peak intensities. The chemical composition between the crude oil and the fuel residues was found completely different. As well, a statistical method was employed in order to discriminate residues. Although significant differences were observed, no conclusions in terms of age and provenance could be reached due to the unknowledgment in the origin of the samples.  相似文献   

18.
Detecting trace explosive residues at standoff distances in real-time is a difficult problem. One method ideally suited for real-time standoff detection is laser-induced breakdown spectroscopy (LIBS). However, atmospheric oxygen and nitrogen contributes to the LIBS signal from the oxygen- and nitrogen-containing explosive compounds, complicating the discrimination of explosives from other organic materials. While bathing the sample in an inert gas will remove atmospheric oxygen and nitrogen interference, it cannot practically be applied for standoff LIBS. Alternatively, we have investigated the potential of double pulse LIBS to improve the discrimination of explosives by diminishing the contribution of atmospheric oxygen and nitrogen to the LIBS signal. These initial studies compare the close-contact (< 1 m) LIBS spectra of explosives using single pulse LIBS in argon with double pulse LIBS in atmosphere. We have demonstrated improved discrimination of an explosive and an organic interferent using double pulse LIBS to reduce the air entrained in the analytical plasma.  相似文献   

19.
A large suite of natural carbonate, fluorite and silicate geological materials was studied using laser-induced breakdown spectroscopy (LIBS). Both single- and double-pulse LIBS spectra were acquired using close-contact benchtop and standoff (25 m) LIBS systems. Principal components analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to identify the distinguishing characteristics of the geological samples and to classify the materials. Excellent discrimination was achieved with all sample types using PLS-DA and several techniques for improving sample classification were identified. The laboratory double-pulse LIBS system did not provide any advantage for sample classification over the single-pulse LIBS system, except in the case of the soil samples. The standoff LIBS system provided comparable results to the laboratory systems. This work also demonstrates how PCA can be used to identify spectral differences between similar sample types based on minor impurities.  相似文献   

20.
Laser-induced breakdown spectroscopy of particles ejected by optical catapulting is discussed for the first time. For this purpose, materials deposited on a substrate were ejected and transported from the surface in the form of a solid aerosol by optical catapulting using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser at 1064 nm. A Q-switched Nd:YAG laser at 532 nm was used for chemical characterization of the particles by laser-induced breakdown spectroscopy. Both lasers were synchronized in order to perform suitable spectral detection. The optical catapulting was optimized and evaluated using aluminum silicate particles, nickel spheres, and quartz and stainless steel particles. Experimental parameters such as the interpulse delay time, the sampling distance, the laser fluence, the sampling rate and the particle size have been studied. A correlation between these parameters and the particle size is reported and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号