首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The copper amine oxidases (CAOs) have evolved to catalyze oxidative deamination of unbranchedprimary amines to aldehydes. We report that a branched primary amine bearing an aromatization-prone moiety, ethyl 4-amino-4,5-dihydrothiophene-2-carboxylate (1), is recognized enantioselectively (S > R) by bovine plasma amine oxidase (BPAO) both as a temporary inactivator and as a substrate. Substrate activity results from an O(2)-dependent turnover of the covalently modified enzyme, with release of 4-aminothiophene-2-carboxylate (2) as ultimate product. Interaction of (S)-1 with BPAO occurs within the enzyme active site with a dissociation constant of 0.76 microM. Evidence from kinetic and spectroscopic studies, and HPLC analysis of stoichiometric reactions of BPAO with (S)-1, combined with a model study using a quinone cofactor mimic, establishes that the enzyme metabolizes 1 according to a transamination mechanism. Following the initial isomerization of substrate Schiff base to product Schiff base, a facile aromatization of the latter results in a metastable N-aryl derivative of the reduced cofactor aminoresorcinol, which is catalytically inactive. The latter derivative is then slowly oxidized by O(2), apparently facilitated partially by the active-site Cu(II), to form a quinonimine of the native cofactor that releases 2 upon hydrolysis or transimination with substrate amine. Preferential metabolism of (S)-1 is consistent with the preferential removal of the pro-Salpha-proton in metabolism of benzylamine by BPAO. This study represents the first report of product identification in metabolism of a branched primary amine by a copper amine oxidase and suggests a novel type of reversible mechanism-based (covalent) inhibition where inhibition lifetime can be fine-tuned independently of inhibition potency.  相似文献   

2.
We previously reported that 3-pyrroline and 3-phenyl-3-pyrroline effect a time-dependent inactivation of the copper-containing quinone-dependent amine oxidase from bovine plasma (BPAO) (Lee et al. J. Am. Chem. Soc. 1996, 118, 7241-7242). Quinone cofactor model studies suggested a mechanism involving stoichiometric turnover to a stable pyrrolylated cofactor. Full details of the model studies are now reported along with data on the inhibition of BPAO by a family of 3-aryl-3-pyrrolines (aryl = substituted phenyl, 1-naphthyl, 2-naphthyl), with the 4-methoxy-3-nitrophenyl analogue being the most potent. At the same time, the parent 3-phenyl analogue is a pure substrate for the flavin-dependent mitochondrial monoamine oxidase B from bovine liver. Spectroscopic studies (including resonance Raman) on BPAO inactivated by the 4-methoxy-3-nitrophenyl analogue are consistent with covalent derivatization of the 2,4,5-trihydroxyphenylalanine quinone (TPQ) cofactor. The distinction of a class of compounds acting as an inactivator of one amine oxidase family and a pure substrate of another amine oxidase family represents a unique lead to the development of selective inhibitors of the mammalian copper-containing amine oxidases.  相似文献   

3.
Quinazoline is oxidized by xanthine oxidase initially (and rapidly) to 4-hydroxyquinazoline which subsequently is oxidized more slowly to 2,4-dihydroxyquinazoline. Both oxidative reactions are inhibited strongly by allopurinol. Quinazoline is oxidized by aldehyde oxidase to 4-hydroxyquinazoline but within a short time (3–5 minutes) the reaction ceases; the proposal that cessation of reaction is due to product inhibition is rendered untenable by our observation that 4-hydroxyquinazoline is rapidly oxidized by aldehyde oxidase to 2,4-dihydroxyquinazoline. Preincubation of aldehyde oxidase with quinazoline results in complete inhibition of the ability of the enzyme to oxidize 4-hydroxyquinazoline and the standard substrate N-methylnicotinamide. It appears therefore that quinazoline is able to react with aldehyde oxidase and inactivate it. Quinoxaline and 2-hydroxyquinoxaline are not oxidized by xanthine oxidase but are converted by aldehyde oxidase to 2,3-dihydroxyquinoxaline; all oxidations mediated by aldehyde oxidase are inhibited completely by menadione.  相似文献   

4.
Lysyl oxidase differs from other copper amine oxidases in that its active quinone cofactor reflects cross-linking of a lysyl residue into the tyrosine-derived quinone nucleus found in the plasma and other copper amine oxidases. A model for the lysyl oxidase cofactor (LTQ), 3,3-dimethyl-2,3-dihydroindole-5,6-quinone (4), was synthesized and found to be stable to both hydrolysis and oxidation events that prevent simpler models from functioning as turnover catalysts. We show that 4 catalyzes the aerobic oxidative deamination of benzylamine, though turnover eventually ceases on account of oxidation of the dihydrobenzoxazole tautomer of the "product Schiff base" to form a benzoxazole, a reaction that may be physiologically relevant. The mechanism of the overall reaction profile was elucidated by a combination of optical and NMR spectroscopy and O(2) uptake studies.  相似文献   

5.
It has been known for some time that hydrazine and its methyl and 1,1-dimethyl analogues induce inactivation of the copper-containing quinone-dependent plasma amine oxidase but that the activity recovers over time, suggesting metabolism of all three inhibitors. However, the mechanism responsible for loss and regain of activity has not been investigated. In this study a combination of enzyme studies under a controlled atmosphere along with model studies using 5-tert-butyl-2-hydroxy-1,4-benzoquinone to mimic the 2,4,5-trihydroxyphenylalanine quinone (TPQ) cofactor of the enzyme suggest that regain of enzyme activity represents two different O(2)-dependent processes. In the case of methylhydrazine and 1,1-dimethylhydrazine, we propose that the inactive methylhydrazone/azo form of the enzyme slowly rehydrates and eliminates MeN=NH to give the triol cofactor form, which instantly reoxidizes to the catalytically active quinone form in the presence of O(2). Metabolism of methylhydrazine represents its conversion to CH(4) and N(2), and of 1,1-dimethylhydrazine to CH(2)=O, CH(4), and N(2). In the case of hydrazine itself, however, we propose that the inactive hydrazone/azo form of the enzyme instead undergoes a slow decomposition, probably facilitated by the active-site copper, to give N(2) and a novel 5-desoxy resorcinol form of the cofactor. The latter undergoes a rapid, but noninstantaneous reoxygenation at C5 to restore the active cofactor form, also probably mediated by the active-site copper.  相似文献   

6.
A structural and functional mimic of the galactose oxidase (GOase) enzyme active-site by a copper complex supported over a sterically demanding ligand having [N2O2] donor sites is reported. Specifically, the binding of the histidine (496 and 581) and tyrosine (272 and 495) residues to the copper center in a square-pyramidal fashion in the active-site of galactose oxidase (GOase) enzyme has been modeled in a copper complex, ([(3-tert-butyl-5-methyl-2-hydoxybenzyl)(3'-tert-butyl-5'-methyl-2'-oxobenzyl)(2-pyridylmethyl)]amine)Cu(OAc)) (1b), stabilized over a sterically demanding ligand in which the two phenolate-O atoms mimicked the tyrosine binding while an amine-N and pyridyl-N atoms emulated the histidine binding to the metal center, similar to that in the enzyme active-site. Furthermore, the copper complex 1b is found to be an effective functional model of the enzyme as it efficiently catalyzed the chemoselective oxidation of primary alcohols to aldehydes in high turnover numbers under ambient conditions. An insight into the nature of the active-species was obtained by EPR and CV studies, which in conjunction with the DFT studies, revealed that the active-species is an anti-ferromagnetically coupled diamagnetic radical cation, (1)1b+, obtained by one electron oxidation at the equatorial phenolate-O atom of the ligand in the 1b complex.  相似文献   

7.
As previously described (Pratt, R. F.; Hammar, N. J. J. Am. Chem. Soc. 1998, 120, 3004.), 1-hydroxy-4,5-benzo-2,6-dioxaphosphorinone(3)-1-oxide (salicyloyl cyclic phosphate) inactivates the class C beta-lactamase of Enterobacter cloacae P99 in a covalent fashion. The inactivated enzyme slowly reverts to the active form. This paper shows that reactivation involves a recyclization reaction that regenerates salicyloyl cyclic phosphate rather than hydrolysis of the covalent intermediate. The inactivation, therefore, is a slowly reversible covalent modification of the active site. The thermodynamic dissociation constant of the inhibitor from the inactivated enzyme is 0.16 microM. Treatment of the inactivated enzyme with alkali does not produce salicylic acid but does, after subsequent acid hydrolysis, yield one molar equivalent of lysinoalanine. This result proves that salicyloyl cyclic phosphate inactivates the enzyme by (slowly reversible) phosphorylation of the active site serine residue. This result contrasts sharply with the behavior of acyclic acyl phosphates which transiently inactivate the P99 beta-lactamase by acylation (Li, N.; Pratt, R. F. J. Am. Chem. Soc. 1998, 120, 4264.). This chemoselectivity difference is explored by means of molecular modeling. Rather counterintuitively, in view of the relative susceptibility of phosphates and phosphonates to nucleophilic attack at phosphorus, 1-hydroxy-4,5-benzo-2-oxaphosphorinanone(3)-1-oxide, the phosphonate analogue of salicyloyl cyclic phosphate, did not appear to inactivate the P99 beta-lactamase in a time-dependent fashion. It was found, however, to act as a fast reversible inhibitor (K(i) = 10 microM). A closer examination of the kinetics of inhibition revealed that both on and off rates (9.8 x 10(3) s(-1) x M(-1) and 0.098 s(-1), respectively) were much slower than expected for noncovalent binding. This result strongly indicates that the inhibition reaction of the phosphonate also involves phosphylation of the active site. Hence, unlike the situation with bacterial DD-peptidases covalently inactivated by beta-lactams, the P99 beta-lactamase inactivated by the above cyclic acyl phosph(on)ates can be rescued by return. Elimination of the recyclization reaction would lead to more effective inhibitors.  相似文献   

8.
Cytochrome P-450, as reported previously is inactivated during catalytic turnover of 1-aminobenzotriazole due to alkylation of its prosthetic heme group. NMR analysis of the heme adduct after removal of the iron atom identifies it unequivocally as a derivative of protoporphyrin IX in which two of the nitrogens are bridged by a benzene ring. Cytochrome P-450 destructive activity is retained by analogues with Me or Ac substituents on the exocyclic N but is lost when the N itself is removed or is replaced by a hydroxyl or nitro function. Prosthetic heme alkylation also occurs with 1-amino-1H-naphtho (2,3-d)triazole, the analogue with one additional benzene ring. In vivo studies suggest that 1-aminobenzotriazole is relatively nontoxic. Catalytic turnover of 1-aminobenzotriazole by chloro-peroxidase results in the formation of phenol and in inactivation of the enzyme. The phenol obtained in deuterated water incorporates one deuterium into the aromatic ring. The data indicate that benzyne, formed by enzymatic oxidation of 1-aminobenzotriazole, is responsible for inactivation of cytochrome P-450 and chloroperoxidase.  相似文献   

9.
Ruta graveolens L. is a flavonoid-containing medicinal plant with various biological properties. In the present study, the effects of R. graveolens extract on aldehyde oxidase, a molybdenum hydroxylase, are investigated. Aldehyde oxidase was partially purified from liver homogenates of mature male guinea pigs by heat treatment and ammonium sulphate precipitation. The total extract was obtained by macerating the aerial parts of R. graveolens in MeOH 70% and the effect of this extract on the enzyme activity was assayed using phenanthridine, vanillin and benzaldehyde as substrates. Quercetin and its glycoside form, rutin were isolated, purified and identified from the extract and their inhibitory effects on the enzyme were investigated. R. graveolens extract exhibited a high inhibition on aldehyde oxidase activity (89-96%) at 100 microg/ml which was comparable with 10 microM of menadione, a specific potent inhibitor of aldehyde oxidase. The IC50 values for the inhibitory effect of extract against the oxidation of benzaldehyde, vanillin and phenanthridine were 10.4, 10.1, 43.2 microg/ml, respectively. Both quercetin and rutin at 10 microM caused 70-96% and 27-52% inhibition on the enzyme activity, respectively. Quercetin was more potent inhibitor than rutin, but both flavonols exerted their inhibitory effects mostly in a linear mixed-type.  相似文献   

10.
A mechanism-based inactivator for histone demethylase LSD1   总被引:2,自引:0,他引:2  
Histone demethylase LSD1 is a flavin-dependent amine oxidase that catalyzes the oxidative removal of one or two methyl groups from the methyl-lysine-4 side chain of histone H3. We have designed and synthesized two peptide-based inhibitor analogues that block LSD1. One of these inhibitors, compound 1, contains a propargylamine functionality and shows time-dependent inactivation of LSD1. Peptide substrate, diMeK4H3-21, protected LSD1 against inactivation by 1 in a concentration-dependent fashion. Mass spectrometric analysis showed that 1 forms a covalent interaction with FAD. Compound 1 did not detectably inhibit monoamine oxidase B in the concentration range studied. Compound 1 is thus a selective, mechanism-based inactivator of LSD1 and is likely to serve as a useful tool in the study of histone modifications and chromatin remodeling.  相似文献   

11.
The galactofuranose moiety found in many surface constituents of microorganisms is derived from UDP-D-galactopyranose (UDP-Galp) via a unique ring contraction reaction catalyzed by UDP-Galp mutase. This enzyme, which has been isolated from several bacterial sources, is a flavoprotein. To study this catalysis, the cloned Escherichia coli mutase was purified and two fluorinated analogues, UDP-[2-F]Galf (9) and UDP-[3-F]Galf (10), were chemically synthesized. These two compounds were found to be substrates for the reduced UDP-Galp mutase with the Km values determined to be 65 and 861 microM for 9 and 10, respectively, and the corresponding kcat values estimated to be 0.033 and 5.7 s(-1). Since the fluorine substituent is redox inert, a mechanism initiated by the oxidation of 2-OH or 3-OH on the galactose moiety can thus be firmly ruled out. Furthermore, both 9 and 10 are poorer substrates than UDP-Galf, and the rate reduction for 9 is especially significant. This finding may be ascribed to the inductive effect of the 2-F substituent that is immediately adjacent to the anomeric center, and is consistent with a mechanism involving formation of oxocarbenium intermediates or transition states during turnover. Interestingly, under nonreducing conditions, compounds 9 and 10 are not substrates, but instead are inhibitors for the mutase. The inactivation by 10 is time-dependent, active-site-directed, and irreversible with a K(I) of 270 microM and a k(inact) of 0.19 min(-1). Since the K(I) value is similar to Km, the observed inactivation is unlikely a result of tight binding. To our surprise, the inactivated enzyme could be regenerated in the presence of dithionite, and the reduced enzyme is resistant to inactivation by these fluorinated analogues. It is possible that reduction of the enzyme-bound FAD may induce a conformational change that facilitates the breakdown of the putative covalent enzyme-inhibitor adduct to reactivate the enzyme. It is also conceivable that the reduced flavin bears a higher electron density at N-1, which may play a role in preventing the formation of the covalent adduct or facilitating its breakdown by charge stabilization of the oxocarbenium intermediates/transition states. Clearly, this study has led to the identification of a potent inactivator (10) for this enzyme, and study of its inactivation has also shed light on the possible mechanism of this mutase.  相似文献   

12.
On the basis of the active site topology and enzymic catalytic mechanism of carboxypeptidase A (CPA), a prototypical zinc-containing proteolytic enzyme, alpha-benzyl-2-oxo-1,3-oxazolidine-4-acetic acid (1), was designed as a novel type of mechanism-based inactivator of the enzyme. All four possible stereoisomers of the inhibitor were synthesized in an enantiomerically pure form starting with optically active aspartic acid, and their CPA inhibitory activities were evaluated to find that surprisingly all of the four stereoisomers inhibit CPA in a time dependent manner. The inhibited enzyme did not regain its enzymic activity upon dialysis. The inactivations were prevented by 2-benzylsuccinic acid, a competitive inhibitor that is known to bind the active site of the enzyme. These kinetic results strongly support that the inactivators attach covalently to the enzyme at the active site. The analysis of ESI mass spectral data of the inactivated CPA ascertained the conclusion from the kinetic results. The values of second-order inhibitory rate constants (k(obs)/[I](o)) fall in the range of 1.7-3.6 M(-1) min(-1). The lack of stereospecificity shown in the inactivation led us to propose that the ring cleavage occurs by the nucleophilic attack at the 2-position rather than at the 5-position and the ring opening takes place in an addition-elimination mechanism. The tetrahedral transition state that would be generated in this pathway is thought to be stabilized by the active site zinc ion, which was supported by the PM3 semiemprical calculations. In addition, alpha-benzyl-2-oxo-1,3-oxazolidine-5-acetic acid (18), a structural isomer of 1 was also found to inactivate CPA in an irreversible manner, reinforcing the nucleophilic addition-elimination mechanism. The present study demonstrates that the transition state for the inactivation pathway plays a critical role in determining stereochemistry of the inactivation.  相似文献   

13.
The copper amine oxidase from Arthrobacter globiformis (AGAO) is reversibly inhibited by molecular wires comprising a Ru(II) complex head group and an aromatic tail group joined by an alkane linker. The crystal structures of a series of Ru(II)-wire-AGAO complexes differing with respect to the length of the alkane linker have been determined. All wires lie in the AGAO active-site channel, with their aromatic tail group in contact with the trihydroxyphenylalanine quinone (TPQ) cofactor of the enzyme. The TPQ cofactor is consistently in its active ("off-Cu") conformation, and the side chain of the so-called "gate" residue Tyr296 is consistently in the "gate-open" conformation. Among the wires tested, the most stable complex is produced when the wire has a -(CH2)4- linker. In this complex, the Ru(II)(phen)(bpy)2 head group is level with the protein molecular surface. Crystal structures of AGAO in complex with optically pure forms of the C4 wire show that the linker and head group in the two enantiomers occupy slightly different positions in the active-site channel. Both the Lambda and Delta isomers are effective competitive inhibitors of amine oxidation. Remarkably, inhibition by the C4 wire shows a high degree of selectivity for AGAO in comparison with other copper-containing amine oxidases.  相似文献   

14.
Nitric oxide synthases (NOS) are hemoproteins that catalyze the reaction of L-arginine to L-citrulline and nitric oxide. N-(3-(Aminomethyl)benzyl)acetamidine (1400W) was reported to be a slow, tight-binding, and highly selective inhibitor of iNOS in vitro and in vivo. Previous mechanistic studies reported that 1400W was recovered quantitatively after iNOS fully lost its activity and modification to iNOS was not detected. Here, it is shown that 1400W is a time-, concentration-, and NADPH-dependent irreversible inactivator of iNOS. HPLC-electrospray mass spectrometric analysis of the incubation mixture of iNOS with 1400W shows both loss of heme cofactor and formation of biliverdin, as was previously observed for iNOS inactivation by another amidine-containing compound, N5-(1-iminoethyl)-L-ornithine (L-NIO). The amount of biliverdin produced corresponds to the amount of heme lost by 1400W inactivation of iNOS. A convenient MS/MS-HPLC methodology was developed to identify the trace amount of biliverdin produced by inactivation of iNOS with either 1400W or L-NIO to be biliverdin IXalpha out of the four possible regioisomers. Two mechanisms were previously proposed for iNOS inactivation by L-NIO: (1) uncoupling of the heme peroxide intermediate, leading to destruction of the heme to biliverdin; (2) abstraction of a hydrogen atom from the amidine methyl group followed by attachment to the heme cofactor, which causes the enzyme to catalyze the heme oxygenase reaction. The second mechanistic proposal was ruled out by inactivation of iNOS with d3-1400W, which produced no d2-1400W. Detection of carbon monoxide as one of the heme-degradation products further excludes the covalent heme adduct mechanism. On the basis of these results, a third mechanism is proposed in which the amidine inactivators of iNOS bind as does substrate L-arginine, but because of the amidine methyl group, the heme peroxy intermediate cannot be protonated, thereby preventing its conversion to the heme oxo intermediate. This leads to a change in the enzyme mechanism to one that resembles that of heme oxygenase, an enzyme known to convert heme to biliverdin IXalpha. This appears to be the first example of a compound that causes irreversible inactivation of an enzyme without itself becoming modified in any way.  相似文献   

15.
BACKGROUND: Aminoglycoside antibiotic resistance is largely the result of the production of enzymes that covalently modify the drugs including kinases (APHs) with structural and functional similarity to protein and lipid kinases. One of the most important aminoglycoside resistance enzymes is AAC(6')-APH(2"), a bifunctional enzyme with both aminoglycoside acetyltransferase and kinase activities. Knowledge of enzyme active site structure is important in deciphering the molecular mechanism of antibiotic resistance and here we explored active site labeling techniques to study AAC(6')-APH(2") structure and function. RESULTS: AAC(6')-APH(2") was irreversibly inactivated by wortmannin, a potent phosphatidylinositol 3-kinase inhibitor, through the covalent modification of a conserved lysine in the ATP binding pocket. 5'-[p-(Fluorosulfonyl)benzoyl]adenosine, an electrophilic ATP analogue and known inactivator of other APH enzymes such as APH(3')-IIIa, did not inactivate AAC(6')-APH(2"), and reciprocally, wortmannin did not inactivate APH(3')-IIIa. CONCLUSIONS: These distinct active site label sensitivities point to important differences in aminoglycoside kinase active site structures and suggest that design of broad range, ATP binding site-directed inhibitors against APHs will be difficult. Nonetheless, given the sensitivity of APH enzymes to both protein and lipid kinase inhibitors, potent lead inhibitors of this important resistance enzyme are likely to be found among the libraries of compounds directed against other pharmacologically important kinases.  相似文献   

16.
We have designed more potent inhibitors from the previously reported LF 05-0038, a 6-isoquinolinol based inhibitor of 2,3-oxidosqualene cyclase (IC50: 1.1 microM). Replacement of the 3-OH group by various 3-substituted amino groups, and modification of the alkyl chain borne by the endocyclic nitrogen led to inhibitors with IC50 in the range of 0.15 to 1 microM. In a second step, opening of the bicyclic ring system afforded the corresponding aminoalkylpiperidines which were slightly more potent. Finally, introduction of suitable aromatic containing moieties on the piperidine nitrogen yielded very potent inhibitors such as 20x (IC50 = 18 nM) easy to synthesize and achiral. The recent availability of the crystal structure of squalene-hopene cyclase allowed us to construct a three-dimensional (3D) model of the related 2,3-oxidosqualene cyclase (OSC) which was tentatively used to describe the possible mode of binding of our compounds and which can be useful for designing new inhibitors.  相似文献   

17.
2-Amino-5-[p- (bromoacetamidomethyl)benzenesulfonamidopropyl]-6-methyl-4-pyrimidinol (XV) was synthesized by acylation of 2-amino-5-aminopropyl-6-methyl-4-pyrimidinol (III) with p-cyanobenzenesulfonyl chloride followed by catalytic reduction and reaction of the resultant aminomethyl group with p-nitrophenyl bromoacetate. A second irreversible inhibitor of thymidylate synthetase, namely 2-amino-5-[p-(bromoacetyl)benzene-sulfonamidopropyl]-6-methyl-4-pyrimidinol (XVI), was synthesized by acylation of in with p-acetylbenzenesulfonyl chloride followed by bromination. Both XV and XVI were good reversible inhibitors of thymidylate synthetase and inactivated the enzyme when the candidate compound was incubated with the enzyme. Iodoacetamide, which does not form a complex with enzyme, could inactivate thymidylate synthetase almost as well as XV; therefore it appears that XV inactivated the enzyme by a random bimolecular mechanism rather than by the desired active-site-directed mechanism via an enzyme-inhibitor complex. Similar conclusions were reached with XVI since phenacyl bromide could inactivate the enzyme somewhat more rapidly than XVI.  相似文献   

18.
The preparation of integrated, electrically contacted, flavoenzyme and NAD(P)(+)-dependent enzyme-electrodes is described. The reconstitution of apo-glucose oxidase, apo-GOx, on a FAD cofactor linked to a pyrroloquinoline quinone (PQQ) phenylboronic acid monolayer yields an electrically contacted enzyme monolayer (surface coverage 2.1 x 10(-)(12) mol cm(-)(2)) exhibiting a turnover rate of 700 s(-)(1) (at 22 +/- 2 degrees C). The system is characterized by microgravimetric quartz-crystal microbalance analyses, Faradaic impedance spectroscopy, rotating disk electrode experiments, and cyclic voltammetry. The performance of the enzyme-electrode for glucose sensing is described. Similarly, the electrically contacted enzyme-electrodes of NAD(P)(+)-dependent enzymes malate dehydrogenase, MalD, and lactate dehydrogenase, LDH, are prepared by the cross-linking of affinity complexes generated between the enzymes and the NADP(+) and NAD(+) cofactors linked to a pyrroloquinoline quinone phenylboronic acid monolayer, respectively. The MalD enzyme-electrode (surface coverage 1.2 x 10(-)(12) mol cm(-)(2)) exhibits a turnover rate of 190 s(-)(1), whereas the LDH enzyme-electrode (surface coverage 7.0 x 10(-)(12) mol cm(-)(2)) reveals a turnover rate of 2.5 s(-)(1). Chronoamperometric experiments reveal that the NAD(+) cofactor is linked to the PQQ-phenylboronic acid by two different binding modes. The integration of the LDH with the two NAD(+) cofactor configurations yields enzyme assemblies differing by 1 order of magnitude in their bioelectrocatalytic activities.  相似文献   

19.
Small molecules capable of selective covalent protein modification are of significant interest for the development of biological probes and therapeutics. We recently reported that 2-methyl-4-bromopyridine is a quiescent affinity label for the nitric oxide controlling enzyme dimethylarginine dimethylaminohydrolase (DDAH) (Johnson, C. M.; Linsky, T. W.; Yoon, D. W.; Person, M. D.; Fast, W. J. Am. Chem. Soc. 2011, 133, 1553-1562). Discovery of this novel protein modifier raised the possibility that the 4-halopyridine motif may be suitable for wider application. Therefore, the inactivation mechanism of the related compound 2-hydroxymethyl-4-chloropyridine is probed here in more detail. Solution studies support an inactivation mechanism in which the active site Asp66 residue stabilizes the pyridinium form of the inactivator, which has enhanced reactivity toward the active site Cys, resulting in covalent bond formation, loss of the halide, and irreversible inactivation. A 2.18 ? resolution X-ray crystal structure of the inactivated complex elucidates the orientation of the inactivator and its covalent attachment to the active site Cys, but the structural model does not show an interaction between the inactivator and Asp66. Molecular modeling is used to investigate inactivator binding, reaction, and also a final pyridinium deprotonation step that accounts for the apparent differences between the solution-based and structural studies with respect to the role of Asp66. This work integrates multiple approaches to elucidate the inactivation mechanism of a novel 4-halopyridine "warhead," emphasizing the strategy of using pyridinium formation as a "switch" to enhance reactivity when bound to the target protein.  相似文献   

20.
cis-3-Chloroacrylic acid dehalogenase (cis-CaaD) catalyzes the hydrolytic dehalogenation of cis-3-haloacrylates to yield malonate semialdehyde. The enzyme processes other substrates including an allene (2,3-butadienoate) to produce acetoacetate. In the course of a stereochemical analysis of the cis-CaaD-catalyzed reaction using this allene, the enzyme was unexpectedly inactivated in the presence of NaBH(4) by the reduction of a covalent enzyme-substrate bond. Covalent modification was surprising because the accumulated evidence for cis-CaaD dehalogenation favored a mechanism involving direct substrate hydration mediated by Pro-1. However, the results of subsequent mechanistic, pre-steady state and full progress kinetic experiments are consistent with a mechanism in which an enamine forms between Pro-1 and the allene. Hydrolysis of the enamine or an imine tautomer produces acetoacetate. Reduction of the imine species is likely responsible for the observed enzyme inactivation. This is the first reported observation of a tautomerase superfamily member functioning by covalent catalysis. The results may suggest that some fraction of the cis-CaaD-catalyzed dehalogenation of cis-3-haloacrylates also proceeds by covalent catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号