首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The feasibility of preparing continuous silver shells of different thicknesses on mesoporous silica particles is demonstrated for the first time. The resulting composite nanoparticles with a tuned localized surface plasmon resonance can simultaneously be used as containers for a number of compounds, e.g., drugs for combined therapy of tumors.  相似文献   

2.
Liu  Wenjing  Cheng  Wei  Zhou  Man  Xu  Bo  Wang  Ping  Wang  Qiang  Yu  Yuanyuan 《Cellulose (London, England)》2022,29(13):7477-7494
Cellulose - As a kind of melanin-like nanoparticles, poly(levodopa) nanoparticles have abundant reactive catechol groups, which provide the basis for the structure design of melanin-like...  相似文献   

3.
Assembly of gold nanoparticles mediated by multifunctional fullerenes   总被引:1,自引:0,他引:1  
The understanding of the interparticle interactions of nanocomposite structures assembled using molecularly capped metal nanoparticles and macromolecular mediators as building blocks is essential for exploring the fine-tunable interparticle spatial and macromolecular properties. This paper reports the results of an investigation of the chemically tunable multifunctional interactions between fullerenes (1-(4-methyl)-piperazinyl fullerene, MPF) and gold nanoparticles. The interparticle spatial properties are defined by the macromolecular and multifunctional electrostatic interactions between the negatively charged nanoparticles and the positively charged fullerenes. In addition to characterization of the morphological properties, the surface plasmon resonance band, dynamic light scattering, and surface-enhanced Raman scattering (SERS) properties of the MPF-mediated assembly and disassembly processes have been determined. The change of the optical properties depends on the pH and electrolyte concentrations. The detection of the Raman-active vibration modes (Ag(2) and Hg(8)) of C60 and the determination of their particle size dependence have demonstrated that the adsorption of MPF on the nanoparticle surface in the MPF-Au nm assembly is responsible for the SERS effect. These findings provide new insights into the delineation between the interparticle interactions and the nanostructural properties for potential applications of the nanocomposite materials in spectroscopic and optical sensors and in controlled releases.  相似文献   

4.
Noble metal nanoparticles(Pd,Ag,Pt,Au) with small and relatively uniform sizes were loaded on polydopamine nanospheres through in situ galvanic replacement reaction in aqueous solution.No additional reductant,surfactant or organic solvent was needed.X-ray photoelectron spectroscopy results revealed that the amount of quinone increased,while the amount of phenolic hydroxyl decreased on PDA nanospheres,indicating that the galvanic displacement reaction occurred between catechol groups and noble metal ions.The as-prepared PDA/Pd exhibited high catalytic activity and excellent stability in styrene hydrogenation.Moreover,PDA spheres retains the photo-thermal effect to serve as a nano-sized heater to accelerate the catalytic reactions under near-infrared illumination.  相似文献   

5.
Cai S  Yu B 《Organic letters》2003,5(21):3827-3830
[reaction: see text] Sialylation with N-phenyltrifluoroacetimidates as leaving groups and a catalytic amount of TMSOTf as promoter compares favorably with the previous protocols for direct sialylation and expand in essence the scope of the Schmidt glycosylation reaction.  相似文献   

6.
Strategies for the intracellular delivery of nanoparticles   总被引:1,自引:0,他引:1  
The ability to target contrast agents and therapeutics inside cells is becoming important as we strive to decipher the complex network of events that occur within living cells and design therapies that can modulate these processes. Nanotechnology researchers have generated a growing list of nanoparticles designed for such applications. These particles can be assembled from a variety of materials into desirable geometries and configurations and possess useful properties and functionalities. Undoubtedly, the effective delivery of these nanomaterials into cells will be critical to their applications. In this tutorial review, we discuss the fundamental challenges of delivering nanoparticles into cells and to the targeted organelles, and summarize strategies that have been developed to-date.  相似文献   

7.
阎虎生  刘克良 《高分子科学》2014,32(10):1329-1337
Multifunctional nanocarriers with multilayer core-shell architecture were prepared by coating superparamagnetic Fe3O4 nanoparticles with diblock copolymer folate-poly(ethylene glycol)-b-poly(glycerol monomethacrylate) (FA-PEG-b- PGMA), and triblock copolymer methoxy poly(ethylene glycol)-b-poly(2-(dimethylamino) ethyl methacrylate)-b- poly(glycerol monomethacrylate) (MPEG-b-PDMA-b-PGMA). The PGMA segment was attached to the surfaces of Fe304 nanoparticles, and the outer PEG shell imparted biocompatibility. In addition, folate was conjugated onto the surfaces of the nanocarriers. Cisplatin was then loaded into the nanocarrier by coordination between the Pt atom in cisplatin and the amine groups in the inner shell of the multilayer architecture. The loaded cisplatin showed pH-responsive release: slower release at pH 7.4 (i.e. mimicking the blood environment) and faster release at more acidic pH (i.e. mimicking endosome/lysosome conditions). All of the cisplatin-loaded nanoparticles showed concentration-dependent cytotoxicity in HeLa cells. However, the folate-conjugated cisplatin-loaded carriers exhibited higher cytotoxicity in HeLa cells than non-folate conjugated cisplatin-loaded carriers.  相似文献   

8.
Macroscopic mesoporous silica spheres have been fabricated by alternatively depositing preformed MCM-41 nanoparticles and polyelectrolytes onto polystyrene lattices. High surface area hollow mesoporous spheres were obtained by removal of the core by solvent or calcination. Further, the versatility of the layer-by-layer (LBL) method was extended to fabricate magnetite-mesoporous silica composites by depositing magnetite and MCM-41 nanoparticles onto polystyrene beads. Such high surface area composites are important since the mesopores can be used for encapsulation of varied materials like enzymes and drugs while the presence of magnetite ensures application in biocatalysis and separation under magnetic field.  相似文献   

9.
10.
The process of cancer immunogenic cell death (ICD) provides adjuvanticity and antigenicity from dying tumor cells, thereby stimulating host immune system and promoting antitumor immunity. However, due to the immune evasion of tumor cells and the immunosuppressive tumor microenvironment formed in the process of cancer progression, it is far from satisfactory in the efficacy of the cancer treatments based on ICD. Herein, we report an immuno-amplified nanoparticle (IANP) that can modify mannose onto the tumor cell surface while delivering ICD-inducing drug doxorubicin (DOX) into the tumor cytoplasm. IANP consists of a DOX-loaded polymer core encapsulated within a mannose modified, fusogenic liposome. After reaching tumor cells, IANP achieved to transfer the mannose groups onto the surface of tumor cells through membrane fusion, and simultaneously transport the polymer core into tumor cells for DOX delivery. With this unique ability, IANP triggered the ICD of tumor cells and facilitated the activation of dendritic cells (DCs) via the mannose-C-type lectin receptors (CLRs) interaction, leading to the enhanced immunogenic effects of chemotherapy-induced tumor cell death. As a result, intratumoral injection of IANP achieved to trigger ICD of tumor cells and enhance the anti-tumor immune responses, thereby suppressing the tumor growth effectively. This work demonstrated a potential strategy towards the development of novel ICD-based cancer immunotherapies.  相似文献   

11.
Haberman JM  Gin DY 《Organic letters》2003,5(14):2539-2541
[reaction: see text] A new method for sialylation involving the dehydrative coupling of sialyl donors with the reagent combination of (p-nitrophenyl)(phenyl) sulfoxide and triflic anhydride is reported. This process establishes sialyl C2-hemiketals as viable sialyl donors for complex carbohydrate synthesis.  相似文献   

12.
Development of simple and reliable protocols for the synthesis of organically soluble catalytically active metal nanoparticles is an important aspect of research in nanomaterials. We demonstrate herein the formation of Pd nanoparticles by reduction of aqueous Pd(NO(3))(2) by photoexcited Keggin ions (phosphotungstate anions). This results in the formation of Pd nanoparticles capped with with Keggin ions that render the particles negatively charged. The Keggin ion capped Pd nanoparticles may then be phase transferred into nonpolar organic solvents such as toluene by electrostatic complexation with cationic surfactants such as octadecylamine at the liquid-liquid interface. This results in a new class of catalyst wherein both the Pd core and Keggin ion shell may be used in a range of catalytic reactions leading to a truly multifunctional catalyst dispersible in organic solvents.  相似文献   

13.
Studies focusing on the functionalization of the surface of free silicon nanoparticles are presented. This functionalization is applied to hydrogen-terminated silicon nanoparticles to evaluate how far the well-known solution-phase chemistry of thermal-, radical-, Lewis acid- and UV light-mediated hydrosilylation can be applied to the surface chemistry of silicon nanoparticles. The efficiencies of hydrosilylation for thermal-, radical- and Lewis acid-mediated reactions on silicon nanoparticles surfaces, deduced from the intensity of the ν(Si–H) absorption, are found to be comparable.  相似文献   

14.
15.
We describe a simple and versatile protocol to prepare water-soluble multifunctional nanostructures by encapsulation of different nanoparticles in shell cross-linked, block copolymer micelles. This method permits simultaneous incorporation of different nanoparticle properties within a nanoscale micellar container. We have demonstrated the co-encapsulation of magnetic (gamma-Fe2O3 and Fe3O4), semiconductor (CdSe/ZnS), and metal (Au) nanoparticles in different combinations to form multicomponent micelles that retain the precursor particles' distinct properties. Because these multifunctional hybrid nanostructures spontaneously assemble from solution by simultaneous desolvation of nanoparticles and amphiphilic block copolymer components, we anticipate that this can be used as a general protocol for preparing multifunctional nanostructures without explicit multimaterial synthesis or surface functionalization of nanoparticles.  相似文献   

16.
Raman microscopy is employed to spectroscopically image biological cells previously exposed to fluorescently labelled polystyrene nanoparticles and, in combination with K-means clustering and principal component analysis (PCA), is demonstrated to be capable of localising the nanoparticles and identifying the subcellular environment based on the molecular spectroscopic signatures. The neutral nanoparticles of 50 nm or 100 nm, as characterised by dynamic light scattering, are shown to be non-toxic to a human lung adenocarcinoma cell-line (A549), according to a range of cytotoxicity assays including Neutral Red, Alamar Blue, Coomassie Blue and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Confocal fluorescence microscopy identifies intracellular fluorescence due to the nanoparticle exposure, but the fluorescence distribution is spatially diffuse, potentially due to detachment of the dye from the nanoparticles, and the technique fails to unambiguously identify the distribution of the nanoparticles within the cells. Raman spectroscopic mapping of the cells in combination with K-means cluster analysis is used to clearly identify and localise the polystyrene nanoparticles in exposed cells, based on their characteristic spectroscopic signatures. PCA identifies the local environment as rich in lipidic signatures which are associated with localisation of the nanoparticles in the endoplasmic reticulum. The importance of optimised cell growth conditions and fixation processes is highlighted. The preliminary study demonstrates the potential of the technique to unambiguously identify and locate nonfluorescent nanoparticles in cells and to probe not only the local environment but also changes in the cell metabolism which may be associated with cytotoxic responses.  相似文献   

17.
Fluorescent nanoparticles (NPs), including semiconductor NPs (Quantum Dots), metal NPs, silica NPs, polymer NPs, etc., have been a major focus of research and development during the past decade. The fluorescent nanoparticles show unique chemical and optical properties, such as brighter fluorescence, higher photostability and higher biocompatibility, compared to classical fluorescent organic dyes. Moreover, the nanoparticles can also act as multivalent scaffolds for the realization of supramolecular assemblies, since their high surface to volume ratio allow distinct spatial domains to be functionalized, which can provide a versatile synthetic platform for the implementation of different sensing schemes. Their excellent properties make them one of the most useful tools that chemistry has supplied to biomedical research, enabling the intracellular monitoring of many different species for medical and biological purposes. In this review, we focus on the developments and analytical applications of fluorescent nanoparticles in chemical and biological sensing within the intracellular environment. The review also points out the great potential of fluorescent NPs for fluorescence lifetime imaging microscopy (FLIM). Finally, we also give an overview of the current methods for delivering of fluorescent NPs into cells, where critically examine the benefits and liabilities of each strategy.  相似文献   

18.
In the developing nanotechnology world, numerous attempts have been made to prepare the nobel metallic nanoparticles (NPs), which can improve their applicability in diverse fields. In the present work, the biosynthesis of silver (Ag) NPs has been successfully achieved through the medicinal plant extract (PE) of G. resinifera and effectively used for the catalytic and antibacterial applications. The size dependant tuneable surface plasmon resonance (SPR) properties attained through altering precursor concentrations. The X-ray and selected area diffraction pattern for Ag NPs revealed the high crystalline nature of pure Ag NPs with dominant (111) phase. The high-resolution TEM images show the non-spherical shape of NPs shifting from spherical, hexagonal to triangular, with wide particle size distribution ranging from 13 to 44 nm. Accordingly, the dual-band SPR spectrum is situated in the UV–Vis spectra validating the non-spherical shape of Ag NPs. The functional group present on the Ag NPs surface was analysed by FT-IR confirms the capping and reducing ability of methanolic PE G. resinifera. Further, the mechanism of antimicrobial activity studied using electron microscope showed the morphological changes with destructed cell walls of E. coli NCIM 2931 and S. aureus NCIM 5021 cells, when they treated with Ag NPs. The Ag NPs were more effective against S. aureus and E. coli with MIC 128 μg/ml as compared to P. aeruginosa NCIM 5029 with MIC 256 μg/ml. Apart from this, the reduction of toxic organic pollutant 4-NP to 4-AP within 20 min reveals the excellent catalytic activity of Ag NPs with rate constant k = 15.69 s?1.  相似文献   

19.
New pyrrolylalkanethiolate-stabilized gold and palladium nanoparticles have been prepared: electrochemical polymerization of their metal nanoparticles and their TEMPO-derivatized metal nanoparticles gave the remarkably stable poly(pyrrole metal nanoparticle) films on metal electrodes.  相似文献   

20.
Lipophilic energy transfer cassettes like 1 and 2 are more conveniently synthesized than the corresponding hydrophilic compounds, but they are not easily used in aqueous media. To overcome the latter issue, cassettes 1 and 2 were separately encapsulated in silica nanoparticles (ca. 22 nm) which freely disperse in aqueous media. Photophysical properties of the encapsulated dyes 1-SiO(2) and 2-SiO(2) were recorded. The nanoparticles 1-SiO(2) permeated into Clone 9 rat liver cells and targeted only the ER. A high degree of energy transfer was observed in this organelle such that most of the light fluoresced from the acceptor part, i.e. the particles appeared red. Silica nanoparticles 2-SiO(2) also permeated into Clone 9 rat liver cells and they targeted mitochondria but were also observed in endocytic vesicles (lysosomes or endosomes). In these organelles they fluoresced red and red/green respectively. Thus the cargo inside the nanoparticles influences where they localize in cells, and the environment of the nanoparticles in the cells changes the fluorescent properties of the encapsulated dyes. Neither of these findings were anticipated given that silica nanoparticles of this type are generally considered to be non-porous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号