首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
pH-responsive emulsions are one of the simplest and most readily implementable stimuli-responsive systems. However, their practical uses have been greatly hindered by cyclability. Here, we report a robust pH-responsive emulsion prepared by utilizing pure sodium caseinate (NaCas) as the sole emulsifier. We demonstrate that the emulsification/demulsification of the obtained NaCas-stabilized emulsion can be triggered by simply changing the pH value over 100 cycles, which has never been observed in any protein-stabilized emulsion system. The NaCas-stabilized emulsion maintains its pH-responsive properties even in a saturated salt solution (NaCl ∼ 6.1 M) or seawater. We illustrate how NaCas functions in pH-responsive emulsions and show that when conventional nanoparticles such as zein protein or bare SiO2 particles were coated with a layer of NaCas, the resulting formulated emulsions could be switched on and off over 10 cycles. The unique properties of NaCas thus enable the engineering of conventional Pickering emulsions to pH-responsive Pickering emulsions. Finally, we have integrated catalytically active gold (Au) nanoclusters (NCs) into the NaCas protein and then utilized them to produce emulsions. Remarkably, these NaCas–Au NCs assembled at the oil–water interface exhibited excellent catalytic activity and cyclability, not only in aqueous solution, but also in complicated seawater environments.

An unprecedented pH-responsive emulsion is shaped by utilizing pure sodium caseinate (NaCas) as the sole emulsifier for recyclable interfacial catalysis. This emulsion could be reversibly switched on and off over 100 cycles.  相似文献   

2.
Despite Pickering interfacial biocatalysis being a popular topic in biphasic biocatalysis, the development of water-in-oil (w/o) emulsion systems stabilized by single particles remains a challenge. For the first time, hydrophobized proteinaceous colloidosomes with magnetic-responsiveness are developed to function as both an enzyme carrier and emulsifier, achieving a breakthrough in protein-based w/o Pickering bioconversion. Enzyme-loaded protein colloidosomes are synthesized by a facile and mild method via emulsion templating. This system exhibits superior catalytic activity to other systems at the oil–water interface. Besides, feasible enzyme recovery and reusability ensure that this novel system can be employed as an efficient and eco-friendly recyclable platform.

Engineering proteinaceous colloidosomes with magnetic-responsiveness are designed as both enzyme carrier and emulsifier, achieving a breakthrough in protein-based w/o Pickering interfacial biocatalysis.  相似文献   

3.
The guanidine group-modified silica particles were used as emulsifier to obtain a CO2-responsive Pickering emulsion. To compare the wettability effect of the particles on the stability of the emulsion, both guanidine and alkyl chain were attached on the surface of silica particles. The influences of tension, particles concentration, oil-water fraction, NaCl concentration, and CO2 on Pickering emulsion properties were investigated. Although the particles did not decrease the surface and interfacial tensions of the air/oil-water interfaces, they attached on the oil–water interfaces and stabilized the emulsions at room temperature for at least 4 weeks. Addition of salt increased the emulsion stability and induced phase inversion at high salt concentration. The stabilization–destabilization cycles of the emulsion could be successively controlled by alternative CO2/heating triggers due to the protonation-deprotonation of guanidine groups on the particle surfaces.  相似文献   

4.
Thermo-responsive microgels are unique stabilizers for stimuli-sensitive Pickering emulsions that can be switched between the state of emulsification and demulsification by changing the temperature. However, directly temperature-triggering the phase inversion of microgel-stabilized emulsions remains a great challenge. Here, a hybrid poly(N-isopropylacrylamide)-based microgel has now been successfully fabricated with tunable wettability from hydrophilicity to hydrophobicity in a controlled manner. Engineered microgels are synthesized from an inverse emulsion stabilized with hydrophobic silica nanoparticles, and the swelling-induced feature can make the resultant microgel behave like either hydrophilic or hydrophobic colloids. Remarkably, the phase inversion of such microgel-stabilized Pickering emulsions can be in situ regulated by temperature change. Moreover, the engineered microgels were capable of stabilizing water-in-oil Pickering emulsions and encapsulation of enzymes for interfacial bio-catalysis, as well as rapid cargo release triggered by phase inversion.

Hybrid poly(N-isopropylacrylamide)-based microgels are templated from inverse Pickering emulsions, and the tunable wettability renders as-prepared emulsions with reversible feature.  相似文献   

5.
The field of biocatalysis is expanding owing to the increasing demand for efficient low-cost green chemical processes. However, a feasible strategy for achieving product separation, enzyme recovery, and high catalytic efficiency in biocatalysis remains elusive. Herein, we present thermoresponsive Pickering high internal phase emulsions (HIPEs) as controllable scaffolds for efficient biocatalysis; these HIPEs demonstrate a transition between emulsification and demulsification depending on temperature. Ultra-high-surface-area Pickering HIPEs were stabilized by Candida antarctica lipase B immobilized on starch particles modified with butyl glycidyl ether and glycidyl trimethyl ammonium chloride, thus simplifying the separation and reuse processes and significantly improving the catalytic efficiency. In addition, the switching temperature can be precisely tuned by adjusting the degree of substitution of the modified starches to meet the temperature demands of various enzymes. We believe that this system provides a green platform for various interfacial biocatalytic processes of industrial interest.

The thermoresponsive Pickering high internal phase emulsions stabilized by starch particles as controllable scaffolds for efficient biocatalysis, which simplified the separation and reuse processes and significantly improved the catalytic efficiency.  相似文献   

6.
Bile salts (BS), one of the biological amphiphiles, are usually used as solubilizing/emulsifying agents of lipids or drugs. However, BS such as sodium deoxycholate (NaDC) can''t stabilize an oil-in-water (O/W) emulsion alone due to its unusual molecular structure. In this paper we report that these emulsifiers with poor emulsifying ability can be transformed to highly efficient emulsifiers by combining with negatively charged particles (silica or montmorillonite). Both together can synergistically co-stabilize oil-in-water emulsions at extremely low concentrations (minimum 0.01 mM NaDC plus 0.003 wt% particles). Moreover, the emulsions can be reversibly switched between stable and unstable triggered by CO2/N2 at room temperature. This strategy is universal for emulsions containing different oils (alkanes, aromatic hydrocarbons and triglycerides) and for different BS and offers a generic model for a variety of BS of different molecular structure, which will extend their applications in more technical fields such as emulsion polymerization, biphasic catalysis and emulsion extraction.

Bile salts can be converted to efficient emulsifiers assisted by a trace amount of similarly charged nanoparticles and the emulsions formed are CO2/N2 switchable at room temperature.  相似文献   

7.
Although surfactants and particles are often used together in stabilization of aqueous emulsions, the contribution of each species to such stabilization at the oil-water interface is poorly understood. The situation becomes more complicated if we consider the nonaqueous oil-oil interface, i.e, the stabilization of nonaqueous oil-in-oil (o/o) emulsions by solid particles and reactive surfactants which, to our knowledge, has not been studied before. We have prepared Pickering nonaqueous simple (o/o) emulsions stabilized by a combination of kaolinite particles and a nonionic polymerizable surfactant Noigen RN10 (polyoxyethylene alkylphenyl ether). Different pairs of immiscible oils were used which gave different emulsion stabilities. Using kaolinite with equal volumes of paraffin oil/formamide system gave no stable emulsions at all concentrations while the addition of Noigen RN10 enhanced the emulsion stability. In contrast, addition of Noigen RN10 surfactant to silicon oil-in-glycerin emulsions stabilized by kaolinite resulted in destabilization of the system at all concentrations. For all systems studied here, no phase inversion in simple emulsion was observed by altering the volume fraction of the dispersed phase as compared to the known water-based simple Pickering emulsions.   相似文献   

8.
A series of W/O/W or O/W/O emulsion stabilized solely by two different types of solid nanoparticles were prepared by a two-step method. We explored the option of particular emulsifiers for the multiple Pickering emulsions, and a variety of nanoparticles (silica, iron oxide, and clay) only differing in their wettability was used. The primary W/O emulsion was obtained by the hydrophobic nanoparticles, and then the hydrophilic nanoparticles were used as emulsifier in the secondary emulsification to prepare the W/O/W emulsion. In a similar way, the primary O/W emulsion of the O/W/O emulsion was stabilized by the hydrophilic nanoparticles, while the secondary emulsification to prepare the O/W/O emulsion was effected with the hydrophobic nanoparticles. The resultant multiple Pickering emulsion was stable to coalescence for more than 3 months, except the W/O/W emulsions of which the secondary emulsion stabilized by clay nanoparticles became a simple O/W emulsion in a day after preparation. Moreover, the temperature and pH sensitive poly(N-isopropylacrylamide-co-methacrylic acid) (P(NIPAm-co-MAA)) microgels were introduced as an emulsifier for the secondary emulsification to obtain the stimulus-responsive multiple W/O/W emulsion. Such microgel-stabilized multiple emulsions could realize the efficient controlled release of water-soluble dye, Rhodamine B (RB) on demand in a multiple-emulsion delivery system.   相似文献   

9.
Microgels are extremely interfacially active and are widely used to stabilize emulsions. However, they are commonly used to stabilize oil-in-water emulsions due to their intrinsic hydrophilicity and initially dispersed in water. In addition, there have been no attempts to control microgel structural layers that are formed at the interface and as a result it limits applications of microgel in advanced materials. Here, we show that by introducing octanol into poly(N-isopropylacrylamide-co-methacrylic acid) (PNIPAM-co-MAA) microgels, octanol-swollen microgels can rapidly diffuse from the initially dispersed oil phase onto the water droplet surface. This facilitates the formation of microgel-laden interfacial layers with strong elastic responses and also generates stable inverse water-in-oil Pickering emulsions. These emulsions can be used as templates to produce microgel colloidosomes, herein termed ‘microgelsomes’, with shells that can be fine-tuned from a particle monolayer to a well-defined bilayer. The microgelsomes can then be used to encapsulate and/or anchor nanoparticles, proteins, vitamin C, bio-based nanocrystals or enzymes. Moreover, the programmed release of these substances can be achieved by using ethanol as a trigger to mediate shell permeability. Thus, these reconfigurable microgelsomes with a microgel-bilayer shell can respond to external stimuli and demonstrate tailored properties, which offers novel insights into microgels and promise wider application of Pickering emulsions stabilized by soft colloids.

Inverse W/O Pickering emulsions and reconfigurable microgelsomes with a well-defined bilayer structure are prepared from octanol-swollen PNIPAM-co-MAA microgels and the combination of binary microgels, which promise wider application of soft colloids.  相似文献   

10.
Forming emulsions of carbon dioxide (CO2) and water can largely expand the utility of CO2. Herein we propose for the first time the utilization of a metal–organic framework (MOF) for emulsifying CO2 and water. Owing to the hybrid composition, MOF particles can easily assemble at the CO2/water interface to create a rigid protective barrier around the dispersed droplet. The MOF‐stabilized CO2 and water emulsion has exceptional stability compared to those emulsions stabilized by surfactants or other solids. Moreover, the CO2 and water emulsion stabilized by MOF is “tunable” due to the designable features of MOFs and adjustable character of CO2. Such a novel kind of emulsion composed of CO2, water, and MOF provides a facile route for constructing MOF superstructures with many advantages. The macroporous networks and hollow capsules of different kinds of MOFs have been successfully derived from CO2 and water emulsions.  相似文献   

11.
In this study, we addressed the limitations of conventional enzyme-polymer-conjugate-based Pickering emulsions for interfacial biocatalysis, which traditionally suffer from nonspecific and uncontrollable conjugation positions that can impede catalytic performance. By introducing a non-canonical amino acid (ncAA) at a specific site on target enzymes, we enabled precise polymer-enzyme conjugation. These engineered conjugates then acted as biocatalytically active emulsifiers to stabilize Pickering emulsions, while encapsulating a cell-free protein synthesis (CFPS) system in the aqueous phase for targeted enzyme expression. The resulting cascade reaction system leveraged enzymes expressed in the aqueous phase and on the emulsion interface for optimized chemical biosynthesis. The use of the cell-free system eliminated the need for intact whole cells or purified enzymes, representing a significant advancement in biocatalysis. Remarkably, the integration of Pickering emulsion, precise enzyme-polymer conjugation, and CFPS resulted in a fivefold enhancement in catalytic performance as compared to traditional single-phase reactions. Therefore, our approach harnesses the combined strengths of advanced biochemical engineering techniques, offering an efficient and practical solution for the synthesis of value-added chemicals in various biocatalysis and biotransformation applications.  相似文献   

12.
Abstract Response speed is one of the most important evaluation criteria for CO2 sensors. In this work, we report an ultrafast CO2 fluorescent sensor based on poly[oligo(ethylene glycol) methyl ether methacrylate]-b-poly[N,N-diethylaminoethyl methacrylate-r-4-(2-methylacryloyloxyethylamino)-7-nitro-2,1,3-benzoxadiazole] [POEGMA-b-P(DEAEMA-r-NBDMA)], in which DEAEMA units act as the CO2-responsive segment and 4-nitrobenzo-2-oxa-1,3-diazole (NBD) is the chromophore. The micelles composed of this copolymer could disassemble in 2 s upon CO2 bubbling, accompanying with enhanced fluorescence emission with bathochromic shift. Furthermore, the quantum yield of the NBD chromophore increases with both the CO2 aeration time and the NBD content. Thus we attribute the fluorescent enhancement to the inhibition of the photo-induced electron transfer between unprotonated tertiary amine groups and NBD fluorophores. The sensor is durable although it is based on “soft” materials. These micellar sensors could be facilely recycled by alternative CO2/Ar purging for at least 5 times, indicating good reversibility.  相似文献   

13.
Pickering乳液的制备和应用研究进展   总被引:1,自引:0,他引:1  
周君  乔秀颖  孙康 《化学通报》2012,(2):99-105
Pickering乳液是一种由固体粒子代替传统有机表面活性剂稳定乳液体系的新型乳液。与传统乳液相比,Pickering乳液具有强界面稳定性、减少泡沫出现、可再生、低毒、低成本等优势,在化妆品、食品、制药、石油和废水处理等行业具有广阔的应用前景,受到越来越多研究者们的关注。本文综述了近年来Pickering乳液的研究进展,先介绍Pickering乳液相对于表面活性剂乳液的特色与优势,然后介绍Pickering乳液的制备研究进展,最后介绍Pickering乳液的应用研究进展。  相似文献   

14.
As an ionic cross-linker that can change the size of poly(N-isopropylacrylamide-co-acrylic acid) microgel, Ca2+ is applied as a trigger to demulsify microgel-stabilized oil/water Pickering emulsions. The influence of Ca2+ induced intra-particle ionic cross-linking and inter-particle aggregation on the stability of microgel-stablized “Pickering” emulsion is described. At low and mediate concentration of Ca2+, ionic cross-linking can change the internal elasticity of the microgel, and cause the coarsening of the oil droplets. At high concentration of Ca2+, microgels flocculate due to the salt out effect and the emulsion is destabilized. This work provide a facile method to control the stability of the Pickering emulsions at ambient condition.  相似文献   

15.
“Switch water” (SW) is an aqueous solution of switchable ionic strength trigger by CO2. In this article, three tertiary amino alcohols were chosen to build CO2-responsive SW. An ingenious recyclable SW–diesel oil emulsion system was built to separate oily content from oily cuttings. The separation rate of diesel oil from emulsion almost reached 100% after CO2 treatment under appropriate conditions. Recycling of SW was easily done by N2 treatment. Compared with the traditional methods, CO2-responsive SW which is energy saving, pollution free, and efficient has all the qualifications to become a mainstream treatment in the near future.  相似文献   

16.
A novel type of emulsion gel based on star‐polymer‐stabilized emulsions is highlighted, which contains discrete hydrophobic oil and hydrophilic aqueous solution domains. Well‐defined phenol‐functionalized core‐crosslinked star polymers are synthesized via reversible addition‐fragmentation chain transfer (RAFT)‐mediated dispersion polymerization and are used as stabilizers for oil‐in‐water emulsions. Horseradish‐peroxidase‐catalyzed polymerization of the phenol moieties in the presence of H2O2 enables rapid formation of crosslinked emulsion gels under mild conditions. The crosslinked emulsion gels exhibit enhanced mechanical strength, as well as widely tunable composition.

  相似文献   


17.
A ferrocene surfactant can be switched between single and double head form (FcN+C12/Fc+N+C12) triggered by redox reaction. FcN+C12 can neither stabilize an O/W emulsion alone nor an oil-in-dispersion emulsion in combination with alumina nanoparticles due to the steric hindrance of the ferrocene group. However, such steric hindrance can be overcome by increasing the charge density in Fc+N+C12, so that oil-in-dispersion emulsions can be co-stabilized by Fc+N+C12 and alumina nanoparticles at very low concentrations (1×10−7 M (≈50 ppb) and 0.001 wt %, respectively). Not only can reversible formation/destabilization of oil-in-dispersion emulsions be achieved by redox reaction, but also reversible transformation between oil-in-dispersion emulsions and Pickering emulsions can be obtained through reversing the charge of alumina particles by adjusting the pH. The results provide a new protocol for the design of surfactants for stabilization of smart oil-in-dispersion emulsions.  相似文献   

18.
Stabilization of emulsions with solid particles can be used in several fields of oil and gas industry because of their higher stability. Solid particles should be amphiphilic to be able to make Pickering emulsions. This goal is achieved by using surfactants at low concentrations. Oil-in-water (o/w) emulsions are usually stabilized by surfactant but show poor thermal stability. This problem limits their applications at high-temperature conditions. In this study, a novel formulation for o/w stabilized emulsion by using silica nanoparticles and the nonionic surfactant is investigated for the formulation of thermally stable Pickering emulsion. The experiments performed on this Pickering emulsion formula showed higher thermal stability than conventional emulsions. The optimum wettability was found for DME surfactant and silica nanoparticles, consequently, in that region; Pickering emulsion showed the highest stability. Rheological changes were evaluated versus variation in surfactant concentration, silica concentration and pH. Scanning electron microscopy images approved the existence of a rigid layer of nanoparticle at the oil-water interface. Finally, the results show this type of emulsion remains stable in harsh conditions and allows the system to reach its optimum rheology without adding any further additives.  相似文献   

19.
Hydrogels were successfully synthesized utilizing CO2 as a gellant. A cross‐linking reaction of polyallylamine (PAA) with CO2 in the presence of 1,8‐Diazabicyclo[5,4,0]‐undec‐7‐ene (DBU) provided hydrogels bearing urea cross‐linking points and residual amino groups in the side chains. The obtained hydrogels absorbed CO2 at 25 °C and gave a maximum absorption four times larger than that of PAA aqueous solution and 2.8 times larger than that of the most commonly used absorbent, monoethanolamine. The PAA hydrogels desorbed the absorbed CO2 completely under a N2 atmosphere at 120 °C, and could be repeatedly recycled without loss of efficiency, indicating their potential application as recyclable CO2 absorption materials.

  相似文献   


20.
Through tuning the surface wettability of interfacially active TiO2 particles, a pH-responsive Pickering emulsion system is formed, as in situ separation and recycling of the nano-catalysts system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号