首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We disclose herein the first example of merging photoredox catalysis and copper catalysis for radical 1,4-carbocyanations of 1,3-enynes. Alkyl N-hydroxyphthalimide esters are utilized as radical precursors, and the reported mild and redox-neutral protocol has broad substrate scope and remarkable functional group tolerance. This strategy allows for the synthesis of diverse multi-substituted allenes with high chemo- and regio-selectivities, also permitting late stage allenylation of natural products and drug molecules.

An efficient synthesis of multi-substituted allenes by metallaphotoredox-catalyzed decarboxylative 1,4-carbocyanation of 1,3-enynes is described.  相似文献   

2.
The classic electrophilic bromination leads to ortho- and para-bromination of anilines due to their electron-rich properties. Herein we report the development of an unprecedented Pd-catalyzed meta-C–H bromination of aniline derivatives using commercially available N-bromophthalimide (NBP), which overcomes the competing ortho/para-selectivity of electrophilic bromination of anilines. The addition of acid additives is crucial for the success of this reaction. A broad range of substrates with various substitution patterns can be tolerated in this reaction. Moreover, benzoic acid derivatives bearing complex substitution patterns are also viable with this mild bromination reaction, and meta-C–H chlorination is also feasible under similar reaction conditions. The ease of the directing group removal and subsequent diverse transformations of the brominated products demonstrate the application potential of this method and promise new opportunities for drug discovery.

An unprecedented Pd-catalyzed meta-C–H bromination and chlorination of highly substituted aniline and benzoic acid derivatives using N-bromophthalimide is reported.  相似文献   

3.
Chiral, substituted cyclobutanes are common motifs in bioactive compounds and intermediates in organic synthesis but few asymmetric routes for their synthesis are known. Herein we report the Rh-catalyzed asymmetric hydrometallation of a range of meso-cyclobutenes with salicylaldehydes. The ortho-phenolic group promotes hydroacylation and can be used as a handle for subsequent transformations. The reaction proceeds via asymmetric hydrometallation of the weakly activated cyclobutene, followed by a C–C bond forming reductive elimination. A prochiral, spirocyclic cyclobutene undergoes a highly regioselective hydroacylation. This report will likely inspire the development of other asymmetric addition reactions to cyclobutenes via hydrometallation pathways.

Chiral, substituted cyclobutanes are common motifs in bioactive compounds and intermediates in organic synthesis but few asymmetric routes for their synthesis are known.  相似文献   

4.
Convenient, easily handled, laboratory friendly, robust approaches to afford synthetically important organoboron compounds are currently of great interest to researchers. Among the various available strategies, a metal-free approach would be overwhelmingly accepted, since the target boron compounds can be prepared in a metal-free state. We herein present a detailed study of the metal-free directed ortho-C–H borylation of 2-pyrimidylaniline derivatives. The approach allowed us to synthesize various boronates, which are synthetically important compounds and various four-coordinated triarylborane derivatives, which could be useful in materials science as well as Lewis-acid catalysts. This metal-free directed C–H borylation reaction proceeds smoothly without any interference by external impurities, such as inorganic salts, reactive functionalities, heterocycles and even transition metal precursors, which further enhance its importance.

We present the metal-free ortho-C–H borylation of 2-pyrimidylanilines to afford synthetically important boronic esters and tetra-coordinated triarylboranes, which could be useful in materials science as well as Lewis-acid catalysts.  相似文献   

5.
Rhodium-catalyzed diverse tandem twofold C–H bond activation reactions of para-olefin-tethered arenes have been realized, with unsaturated reagents such as internal alkynes, dioxazolones, and isocyanates being the coupling partner as well as a relay directing group which triggers cyclization of the para-olefin group under oxidative or redox-neutral conditions. The reaction proceeded via initial ortho-C–H activation assisted by a built-in directing group in the arene, and the ortho-incorporation of the unsaturated coupling partner simultaneously generated a relay directing group that allows sequential C–H activation at the meta-position and subsequent cyclization of the para-olefins. The overall reaction represents C–C or N–C difunctionalization of the arene with the generation of diverse 2,3-dihydrobenzofuran platforms. The catalytic system proceeded with good efficiency, simple reaction conditions, and broad substrate scope. The diverse transformations of the products demonstrated the synthetic utility of this tandem reaction.

Rhodium-catalyzed twofold C–H bond activation of para-olefin-tethered arenes has been realized using diverse unsaturated reagents. The overall reaction represents C–C or N–C difunctionalization of arenes with the generation of diverse 2,3-dihydrobenzofurans.  相似文献   

6.
The recent promising applications of deuterium-labeled pharmaceutical compounds have led to an urgent need for the efficient synthetic methodologies that site-specifically incorporate a deuterium atom into bioactive molecules. Nevertheless, precisely building a deuterium-containing stereogenic center, which meets the requirement for optimizing the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of chiral drug candidates, remains a significant challenge in organic synthesis. Herein, a catalytic asymmetric strategy combining H/D exchange (H/D-Ex) and azomethine ylide-involved 1,3-dipolar cycloaddition (1,3-DC) was developed for the construction of biologically important enantioenriched α-deuterated pyrrolidine derivatives in good yields with excellent stereoselectivities and uniformly high levels of deuterium incorporation. Directly converting glycine-derived aldimine esters into the deuterated counterparts with D2O via Cu(i)-catalyzed H/D-Ex, and the subsequent thermodynamically/kinetically favored cleavage of the α-C–H bond rather than the α-C–D bond to generate the key N-metallated α-deuterated azomethine ylide species for the ensuing 1,3-DC are crucial to the success of α-deuterated chiral pyrrolidine synthesis. The current protocol exhibits remarkable features, such as readily available substrates, inexpensive and safe deuterium source, mild reaction conditions, and easy manipulation. Notably, the synthetic utility of a reversed 1,3-DC/[H/D-Ex] protocol has been demonstrated by catalytic asymmetric synthesis of deuterium-labelled MDM2 antagonist idasanutlin (RG7388) with high deuterium incorporation.

A strategy of combining H/D-Ex and azomethine ylide-involved 1,3-DC was developed for the construction of α-deuterated pyrrolidine derivatives in good yields with excellent stereoselectivities and uniformly high levels of deuterium incorporation.  相似文献   

7.
A mesoionic N-heterocyclic olefin (mNHO) was introduced as a metal-free catalyst for the reductive functionalization of CO2 leading to consecutive double N-methylation of primary amines in the presence of 9-borabicyclo[3.3.1]nonane (9-BBN). A wide range of secondary amines and primary amines were successfully methylated under mild conditions. The catalyst sustained over six successive cycles of N-methylation of secondary amines without compromising its activity, which encouraged us to check its efficacy towards double N-methylation of primary amines. Moreover, this method was utilized for the synthesis of two commercially available drug molecules. A detailed mechanistic cycle was proposed by performing a series of control reactions along with the successful characterisation of active catalytic intermediates either by single-crystal X-ray study or by NMR spectroscopic studies in association with DFT calculations.

Mesoionic N-heterocyclic olefin (mNHO) catalysed consecutive N-methylation of primary and secondary amines was accomplished under 1 atm CO2 pressure in the presence of 9-BBN as a reducing agent nearly at room temperature.  相似文献   

8.
Aryl azoles are ubiquitous as bioactive compounds and their regioselective functionalization is of utmost synthetic importance. Here, we report the development of a toluene-soluble dialkylmagnesium base sBu2Mg. This new reagent allows mild and regioselective ortho-magnesiations of various N-arylated pyrazoles and 1,2,3-triazoles as well as arenes bearing oxazoline, phosphorodiamidate or amide directing groups. The resulting diarylmagnesium reagents were further functionalized either by Pd-catalyzed arylation or by trapping reactions with a broad range of electrophiles (aldehydes, ketones, allylic halides, acyl chlorides, Weinreb amides, aryl halides, hydroxylamine benzoates, terminal alkynes). Furthermore, several double ortho,ortho′-magnesiations were realized in the case of aryl oxazolines, N-aryl pyrazoles as well as 2-aryl-2H-1,2,3-triazoles by simply repeating the magnesiation/electrophile trapping sequence allowing the preparation of valuable 1,2,3-functionalized arenes.

A toluene solution of sBu2Mg allowed a regioselective ortho-magnesiation of aromatic and heterocyclic systems. A second ortho,ortho′-functionalization was achieved in the case of aryl oxazolines, N-aryl pyrazoles as well as N-aryl triazoles.  相似文献   

9.
A direct Pd(ii)-catalyzed kinetic resolution of heteroaryl-enabled sulfoximines through an ortho-C–H alkenylation/arylation of arenes has been developed. The coordination of the sulfoximine pyridyl-motif and the chiral amino acid MPAA ligand to the Pd(ii)-catalyst controls the enantio-discriminating C(aryl)–H activation. This method provides access to a wide range of enantiomerically enriched unreacted aryl-pyridyl-sulfoximine precursors and C(aryl)–H alkenylation/arylation products in good yields with high enantioselectivity (up to >99% ee), and selectivity factor up to >200. The coordination preference of the directing group, ligand effect, geometry constraints, and the transient six-membered concerted-metalation–deprotonation species dictate the stereoselectivity; DFT studies validate this hypothesis.

A Pd/MPAA catalysed KR of heteroaryl substituted sulfoximines through C–H alkenylation and arylation (up to >99% ee) is developed. In-depth DFT studies uncover the salient features.  相似文献   

10.
The ortho-alkynylation of nitro-(hetero)arenes takes place in the presence of a Rh(iii) catalyst to deliver a wide variety of alkynylated nitroarenes regioselectively. These interesting products could be further derivatized by selective reduction of the nitro group or palladium-catalysed couplings. Experimental and computational mechanistic studies demonstrate that the reaction proceeds via a turnover-limiting electrophilic C–H metalation ortho to the strongly electron-withdrawing nitro group.

Rh(iii)-catalyzed ortho-alkynylation of nitro-(hetero)arenes leads to a wide variety of alkynylated nitroarenes via a turnover-limiting electrophilic C–H ortho-metalation.  相似文献   

11.
A capability was studied of hydrogenated α-pyrone heterocycle in 7-methoxy-4-(4-methoxy-phenyl)-3,4-dihydro-2H-benzo[h]chromen-2-one to undergo aminolysis under the treatment with hydrazine hydrate, primary and secondary aliphatic and aromatic amines. A new approach was developed to the preparation of perihydroxyketone of naphthalene series containing a specific functional substituent in the ortho-position with respect to hydroxy group. The effect was revealed of an acetyl group in the position 9 of 7-methoxy-4-(4-methoxyphenyl)-3,4-dihydro-2H-benzo[h]chromen-2-one on the reaction of this compound with aliphatic amines and hydrazine hydrate. 9-Methoxy-1-(4-methoxyphenyl)-6-methyl-3H-benzo[de]pyrido[3,2,1-if]cinnolin-3-one [9-methyl-6-methoxy-3-(4-methoxyphenyl)-10,10a-diazapyren-1-one] was obtained, a new bis-peri-fused heteroaromatic system.  相似文献   

12.
Construction of C(sp2)–C(sp3) bonds via regioselective coupling of C(sp2)–H/C(sp3)–H bonds is challenging due to the low reactivity and regioselectivity of C–H bonds. Here, a novel photoinduced Ru/photocatalyst-cocatalyzed regioselective cross-dehydrogenative coupling of dual remote C–H bonds, including inert γ-C(sp3)–H bonds in amides and meta-C(sp2)–H bonds in arenes, to construct meta-alkylated arenes has been accomplished. This metallaphotoredox-enabled site-selective coupling between remote inert C(sp3)–H bonds and meta-C(sp2)–H bonds is characterized by its unique site-selectivity, redox-neutral conditions, broad substrate scope and wide use of late-stage functionalization of bioactive molecules. Moreover, this reaction represents a novel case of regioselective cross-dehydrogenative coupling of unactivated alkanes and arenes via a new catalytic process and provides a new strategy for meta-functionalized arenes under mild reaction conditions. Density functional theory (DFT) calculations and control experiments explained the site-selectivity and the detailed mechanism of this reaction.

A novel photoinduced Ru/photocatalyst-cocatalyzed regioselective cross-dehydrogenative coupling of dual remote C–H bonds, including inert γ-C(sp3)–H bonds in amides and meta-C(sp2)–H bonds in arenes, to construct meta-alkylated arenes has been accomplished.  相似文献   

13.
Short aliphatic groups are prevalent in bioactive small molecules and play an essential role in regulating physicochemistry and molecular recognition phenomena. Delineating their biological origins and significance have resulted in landmark developments in synthetic organic chemistry: Arigoni''s venerable synthesis of the chiral methyl group is a personal favourite. Whilst radioisotopes allow the steric footprint of the native group to be preserved, this strategy was never intended for therapeutic chemotype development. In contrast, leveraging H → F bioisosterism provides scope to complement the chiral, radioactive bioisostere portfolio and to reach unexplored areas of chiral chemical space for small molecule drug discovery. Accelerated by advances in I(i)/I(iii) catalysis, the current arsenal of achiral 2D and 3D drug discovery modules is rapidly expanding to include chiral units with unprecedented topologies and van der Waals volumes. This Perspective surveys key developments in the design and synthesis of short multivicinal fluoroalkanes under the auspices of main group catalysis paradigms.

Short aliphatic groups are prevalent in bioactive small molecules and play an essential role in regulating physicochemistry and molecular recognition phenomena.  相似文献   

14.
C(sp3)–H bond desaturation has been an attractive strategy in organic synthesis. Enamides are important structural fragments in pharmaceuticals and versatile synthons in organic synthesis. However, the dehydrogenation of amides usually occurs on the acyl side benefitting from enolate chemistry like the desaturation of ketones and esters. Herein, we demonstrate an Fe-assisted regioselective oxidative desaturation of amides, which provides an efficient approach to enamides and β-halogenated enamides.

A novel and regioselective N-α,β-desaturation and dehydrogenative N-β-halogenation of amides was developed. This chemistry with high selectivity and broad substrate scope provides an efficient approach to enamides from simple amides.  相似文献   

15.
Radical spirocyclization via dearomatization has emerged as an attractive strategy for the rapid synthesis of structurally diverse spiro molecules. We report the use of electrochemistry to perform an oxidative dearomatization of biaryls leading to tri- and difluoromethylated spiro[5.5]trienones in a user friendly undivided cell set-up and a constant current mode. The catalyst- and chemical oxidant-free dearomatization procedure features ample scope, and employs electricity as the green and sole oxidant.

Radical spirocyclization via dearomatization has emerged as an attractive strategy for the rapid synthesis of structurally diverse spiro molecules.  相似文献   

16.
Herein, we report a mild and highly regioselective Rh(iii)-catalyzed non-oxidative [5 + 1] vinylic C–H annulation of 2-alkenylanilides with allenyl acetates, which has been elusive so far. The reaction proceeds via vinylic C–H activation, regioselective 2,3-migratory insertion, β-oxy elimination followed by nucleophilic cyclization to get direct access to 1,2-dihydroquinoline derivatives. The strategy was also successfully extended to C–H activation of 2-alkenylphenols for constructing chromene derivatives. In the overall [5 + 1] annulation, the allene serves as a one carbon unit. The acetate group on the allene is found to be crucial both for controlling the regio- and chemoselectivity of the reaction and also for facilitating β-oxy elimination. The methodology was scalable and also further extended towards late stage functionalization of various natural products.

A highly regioselective Rh(iii)-catalyzed non-oxidative [5 + 1] vinylic C–H annulation of 2-alkenylanilides and 2-alkenylphenols with allenyl acetates was described for accessing dihyroquinoline and chromene derivatives.  相似文献   

17.
A ligand-controlled palladium-catalyzed highly regioselective and diastereodivergent aminomethylative annulation of dienyl alcohols with aminals has been established, which allows for producing either cis- or trans-disubstituted isochromans in good yields with complete regioselectivity and good to excellent diastereoselectivity. Moreover, the chiral cis-products were also obtained in good yields with up to 94% ee by using a chiral phosphinamide as the ligand. Mechanistic studies revealed that the hydroxyl group plays a key role in facilitating the Pd-catalyzed Heck insertion regioselectively taking place across the internal C Created by potrace 1.16, written by Peter Selinger 2001-2019 C bond of conjugated dienes.

An efficient hydrogen-bonding assisted directing strategy has been identified, which enables the Pd-catalyzed highly regioselective and diastereodivergent 3,4-difunctionalized aminomethylative annulation of dienyl alcohols with aminals.  相似文献   

18.
There are three possible isomers for hexa-peri-hexabenzocoronene (HBC) with two extra K-regions, but only two of them have been reported, namely with the meta- and para-configurations. Herein, we describe the synthesis of HBC 4 with two extra K-regions in the ortho-configuration, forming a longer zigzag edge compared with the other two isomers. The structure of 4 was validated by laser desorption/ionization time-of-flight mass analysis and nuclear magnetic resonance spectra, as well as Raman and infrared spectroscopies supported by density functional theory calculations. The optical properties of 4 were investigated by UV/vis absorption and ultrafast transient absorption spectroscopy. Together with the analysis of aromaticity, the influence of the zigzag edge on the π-conjugation pathway and HOMO–LUMO gaps of the three isomers were investigated.

We reported the synthesis of hexa-peri-benzocoronene (HBC) with two extra K-regions adopting an ortho-configuration. The systematical study provides deep insights about the effect of zigzag edge on the π-conjugated pathway and molecular design.  相似文献   

19.
Molecular and crystal structure of a series of derivatives of N,N-dimethyl-4-nitroaniline has been studied by both X-ray diffraction method and high-level ab initio calculations. According to these data, the dimethylamino groups were found to have a trigonal-pyramidal configuration and are considerably turned with respect to the ring plane in all molecules having a substituent in the ortho-position; on the contrary, this group is planar in the meta-substituted molecules. Topological analysis of the electron density function for all molecules studied within the framework of Bader's ‘atoms in molecules’ (AIM) theory revealed that introduction of a substituent into the ortho- or meta-position of the ring results in increasing of the contribution of the resonance forms different from the quinoid one. Contribution of the latter form is predominant for the structure of N,N-dimethyl-4-nitroaniline (1). Topological analysis of the electron density distribution was used to explain a decreasing of the molecular hyperpolarisabilites of the ortho- and meta-substituted compounds as compared with those for 1.  相似文献   

20.
Divergent synthesis is a powerful strategy for the fast assembly of different molecular scaffolds from identical starting materials. We describe here a solvent-controlled photocatalytic divergent cyclization of alkynyl aldehydes with sulfonyl chlorides for the direct construction of highly functionalized cyclopentenones and dihydropyranols that widely exist in bioactive molecules and natural products. Density functional theory calculations suggest that a unique N,N-dimethylacetamide-assisted 1,2-hydrogen transfer of alkoxy radicals is responsible for the cyclopentenone formation, whereas a C–C cleavage accounts for the selective production of dihydropyranols in acetonitrile and water at 50 °C. Given the simple and mild reaction conditions, excellent functional group compatibility, forming up to four chemical bonds, and tunable selectivity, it may find wide applications in synthetic chemistry.

A solvent-controlled photocatalytic divergent cyclization of alkynyl aldehydes is developed, providing a facile access to sulfonylated cyclopentenones and dihydropyranols under mild conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号