首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The N,N‐dimethylaniline (DMA) radical cation DMA.+, a long‐sought transient intermediate, was detected by mass spectrometry (MS) during the electrochemical oxidation of DMA. This was accomplished by coupling desorption electrospray ionization (DESI) MS with a waterwheel working electrode setup to sample the surface of the working electrode during electrochemical analysis. This study clearly shows that DESI‐based electrochemical MS is capable of capturing electrochemically generated intermediates with half‐lives on the order of microseconds, which is 4–5 orders of magnitude faster than previously reported electrochemical mass spectrometry techniques.  相似文献   

2.
Accumulation of electroactive anions into a silicate film with covalently bonded room temperature ionic liquid film deposited on an indium tin oxide electrode was studied and compared with an electrode modified with an unconfined room temperature ionic liquid. A thin film containing imidazolium cationic groups was obtained by sol‐gel processing of the ionic liquid precursor 1‐methyl‐3‐(3‐trimethoxysilylpropyl)imidazolium bis(trifluoromethylsulfonyl)imide together with tetramethylorthosilicate on the electrode surface. Profilometry shows that the obtained film is not smooth and its approximate thickness is above 1 μm. It is to some extent permeable for a neutral redox probe – 1,1′‐ferrocene dimethanol. However, it acts as a sponge for electroactive ions like Fe(CN)63?, Fe(CN)64? and IrCl63?. This effect can be traced by cyclic voltammetry down to a concentration equal to 10?7 mol dm?3. Some accumulation of the redox active ions also occurs at the electrode modified with the ionic liquid precursor, but the voltammetric signal is significantly smaller compare with the bare electrode. The electrochemical oxidation of the redox liquid t‐butyloferrocene deposited on silicate confined ionic liquid film is followed by the expulsion of the electrogenerated cation into an aqueous solution. On the other hand, the voltammetry obtained with the electrode modified with t‐butyloferrocene solution in the ionic liquid precursor exhibits anion sensitive voltammetry. This is explained by anion insertion into the unconfined ionic liquid deposit following t‐butylferricinium cation formation.  相似文献   

3.
Heterocyclic compounds with structures similar to vitamin E, but without the hydroxyl hydrogen atom, were synthesized and their electrochemical behavior examined in acetonitrile solutions and as solids in aqueous solutions of varying pH by attaching the compounds to the surface of a glassy carbon electrode. Compound 1, containing a fully methylated aromatic ring was found to be the most long-lived following one-electron oxidation, with its radical cation (1+*) surviving in acidic aqueous solutions and able to be isolated as a salt, 1+*(SbF6-), when reacted with NOSbF6 in CH3CN. Electrochemical, UV-vis and FTIR experiments on 1+*, in addition to the results from theoretical calculations, indicated that the electrochemical, electronic and structural properties of 1+* are very similar to those of the radical cation of vitamin E.  相似文献   

4.
A dynamic supramolecular approach is developed to promote the π-dimerization of viologen radicals at room temperature and in standard concentration ranges. The approach involves cis- or trans-protected palladium centers serving as inorganic hinges linking two functionalized viologens endowed with metal-ion coordinating properties. Based on detailed spectroscopic, electrochemical and computational data, we show that the one-electron electrochemical reduction of the viologen units in different dynamic metal/ligand mixtures leads to the formation of the same intramolecular π-dimer, regardless of the initial environment around the metallic precursor and of the relative ratio between metal and ligand initially introduced in solution. The large-scale electron-triggered reorganization of the building blocks introduced in solution thus involves drastic changes in the stoichiometry and stereochemistry of the palladium/viologen complexes proceeding in some cases through a palladium centered transcis isomerization of the coordinated ligands.  相似文献   

5.
The electrochemical reduction of fluorene and p-cyanoaniline in DMF at a platinum electrode is initially a one-electron process which affords the corresponding readical anions. In the absence of an added proton donor, decomposition of the radical anions occurs by carbonhydrogen bond cleavage to give the conjugate bases of the starting materials; the anions subsequently slowly abstract a proton from the tetraalkylammonium cation of the supporting electrolyte to regenerate the original electroactive species. In the presence of dimethylmalonate, both radical anions rapidly electron transfer to the added proton donor. Neither self-protonation nor protonation by the added donor was observed for either radical anion. In addition to proton abstraction, 9-fluorenyl anion reacts with oxygen to give fluorene and hydroxide ion. Abstraction of a proton from fluorene by the latter species then effects a chain reaction in which 9-fluorenyl anion is the chain-carrying species. Reduction of bifluorenyl occurs with carbon-carbon bond cleavage to give 9-fluorenyl anion as the initial product. Subsequent proton transfer from bifluorenyl to 9-fluorenyl anion then yields the final products, 9-bifluorenyl anion and fluorene, in equimolar amounts.  相似文献   

6.
有机溶剂中联苯和联三苯的电化学氧化聚合   总被引:4,自引:0,他引:4  
崔胜云 《电化学》2000,6(4):428-433
应用电化学石英晶体微天平和反射光谱电化学方法研究了 0 .10molL 1四氟硼酸化四丁铵 二氯甲烷溶液中联苯和联三苯在铂电极上的氧化聚合 .结果表明 ,联苯和联三苯经氧化后在溶液中偶合成聚合物 ,生成的聚合物沉积在铂电极表面 .聚合反应是通过单体氧化后生成的自由基离子偶合进行的 .聚合物的生成量与单体氧化生成的自由基离子的量有关 .由于联三苯的氧化电位低于联苯 ,因此在相同的实验条件下前者在铂电极上的聚合沉积速度较快 .聚合过程的吸收光谱红移说明随着电解的进行 ,氧化的联苯和联三苯的自由基离子聚合成长链的聚合物  相似文献   

7.
Conclusions The mechanisms of the electrochemical oxidation of mono- and dinitroylides of S and Se on a Pt electrode in CH3CN have been studied for the first time. It was shown that the cation radical formed as intermediate was able to react with the medium with removal of an H atom and with the formation of an onium cation or to undergo decomposition. Competition of these processes determines the special features of the electrooxidation of mononitroylides, while on oxidation of dinitroylides the intermediate cation radical decomposed to oxides of nitrogen.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 6, pp. 1332–1338, June, 1981.  相似文献   

8.
In aqueous media, 1-benzyl-3-carbamoylpyridinium ion undergoes an initially reversible one-electron reduction to produce a free radical, which irreversibly dimerises to a 4,4′-linked diastereoisomeric pair. At more negative potential, the free radical undergoes a further one-electron reduction to a mixture of 1,6- and 1,4-dihydropyridine derivatives. At sufficiently positive potential the dimers can be oxidised back to pyridinium cation. The dimeric products are strongly adsorbed on the electrode surface, also at potential values where 2e products are formed, and this is a preparative drawback for the dimers and the dihydropyridines. Such problems can be overcome by the addition of benzene and of surface-active substances respectively. A detailed mechanism of the electrochemical reduction of 1-benzyl-3-carbamoylpridinium ion is proposed.  相似文献   

9.
The reaction of a dye cation recombining with an electron in TiO(2), in the presence of Li(+), Ca(2+), and TBA(+) cations, was studied with laser-induced transient absorption measurements. The active cations, Li(+) and Ca(2+), shorten the dye cation lifetime on sensitized TiO(2) but not ZnO electrodes. By combining the absorbance measurements of the dye cation with simultaneous measurements of the current transient, the contribution of the recombination reaction to the current is identified. Furthermore, classical porous electrode theory is used to quantify the behavior of the heterogeneous electrode, and in doing so, the processes contributing to photoinduced current are identified as Helmholtz layer charging, porous electrode charging, recombination reactions, and surface diffusion of the active cations. The rate of charge recombination is proportional to the concentration of initially deposited active cations. The effect of water on the recombination rate and the current is also observed.  相似文献   

10.
The possibility to couple a transient electrochemical detection of the redox intermediates produced by a picosecond electron accelerator is explored. The principle is demonstrated with the well-behaved methylviologen radical cation that can be reoxidised at the electrode and simultaneously detected by transient absorption.  相似文献   

11.
The electrochemical oxidation of the N-cyanomethyloxazolidine system in acetonitrile at a platinum electrode afforded a radical cation which might follow either one of two pathways, according to the experimental conditions: the first, in the presence of chloride or bromide ions led to halogenated products, the second, in the presence of water, led to lactam/amide formation. The mechanistic pathway of both reactions is discussed.  相似文献   

12.
The electrochemical separation of uranium from cerium in LiCl–KCl eutectic and the electrochemical behavior of Ce(III) were studied. According to the cyclic voltammogram of Ce(III) and the former result of U(III), electrodeposition potential was determined at ?1.65 V (vs Ag/AgCl). The uranium metal was successfully deposited and separated from cerium. The morphology of deposit and cross section of electrode were investigated by SEM, firstly uranium deposit alloys with stainless steel and forms a thin transition layer, and secondly the uranium metal layer grows from the transition layer. The separation factors of uranium/cerium on different recovery ratios were determined through a series of steps. It was found that the content of cerium in the deposit and separation factors declined with increasing the initial concentration of U3+ in molten salts; the separation factors remained stable at around 20 in different uranium recovery ratios.  相似文献   

13.
Novel conjugated azomethines consisting uniquely of thiophene units are presented. The highly conjugated compounds were synthesized by simple condensation of a stable diamino thiophene (2) with its complementary thiophene aldehydes. These interesting nitrogen-containing thiophene units exhibit variable reactivity leading to controlled aldehyde addition. Because of the different amino reactivity, a one-pot synthesis of unsymmetric and symmetric conjugated azomethines with varying number of thiophene units was possible by judicious choice of solvent and careful control of reagent stoichiometry. The resulting covalent conjugated connections are both reductively and hydrolytically resistant. The thermodynamically E isomer is formed uniquely for all of the azomethines synthesized, which is confirmed by crystallographic studies. These also demonstrated that the azomethine bonds and the thiophene units are highly planar and linear. The fluorescence and phosphorescence of the thiopheno azomethines measured are similar to those of thiophene analogues currently used in functional devices, but with the advantage of low triplet formation and band-gaps as low as 1.9 eV. The time-resolved and steady-state temperature-dependent photophysics revealed the thiopheno azomethines do not populate extensively their triplet manifold by intersystem crossing. Rather, their excited-state energy is dissipated predominantly by nonradiative means of internal conversion. Quasi-reversible electrochemical radical cation formation of the thiophene units was found. These compounds further undergo electrochemically induced oxidative cross-coupling, resulting in conjugated products that also exhibit reversible radical cation formation.  相似文献   

14.
Ion transfer across the toluene|water, toluene–ionic liquid mixture|water and ionic liquid|water boundary generated by electrochemical redox reaction of tert-butylferrocene (tBuFc) was studied with the glassy carbon (GC) electrode partially covered by the organic liquid deposit and immersed in the aqueous electrolyte solution. The electrooxidation of the redox probe in toluene deposit is followed by ejection of newly formed cation into the aqueous solution. The same reaction in the toluene–ionic liquid deposit promotes anion insertion. This pathway is also found at the electrode modified with ionic liquid.  相似文献   

15.
A novel experimental methodology for depositing and voltammetric study of Ag nanoparticles at the water-nitrobenzene (W-NB) interface is proposed by means of thin-film electrodes. The electrode assembly consists of a graphite electrode modified with a thin NB film containing decamethylferrocene (DMFC) as a redox probe. In contact with an aqueous electrolyte containing Ag(+) ions, a heterogeneous electron-transfer reaction between DMFC((NB)) and Ag(+)((W)) takes place to form DMFC(+)((NB)) and Ag deposit at the W-NB interface. Based on this interfacial reaction, two different deposition strategies have been applied. In the uncontrolled potential deposition protocol, the electrode is immersed into an AgNO(3) aqueous solution for a certain period under open circuit conditions. Following the deposition step, the Ag-modified thin-film electrode is transferred into an aqueous electrolyte free of Ag(+) ions and voltammetrically inspected. In the second protocol the deposition was carried out under controlled potential conditions, i.e., in an aqueous electrolyte solution containing Ag(+) ions by permanent cycling of the electrode potential. In this procedure, DMFC((NB)) is electrochemically regenerated at the electrode surface, hence enabling continuation and voltammetric control of the Ag deposition. Hence, the overall electrochemical process can be regarded as an electrochemical reduction of Ag(+)((W)) at the W-NB interface, where the redox couple DMFC(+)/DMFC acts as a mediator for shuttling electrons from the electrode to the W-NB interface. Ag-particles deposited at the W-NB interface affect the ion transfer across the interface, which provides the basis for voltammetric inspection of the metal deposit at the liquid-liquid interface with thin-film electrodes. Voltammetric properties of thin-film electrodes are particularly sensitive to the deposition procedure, reflecting differences in the properties of the Ag deposit. Moreover, this methodology is particularly suited to inspect catalytic activities of metal particles deposited at the liquid-liquid interface toward heterogeneous electron-transfer reactions occurring at the at the liquid-liquid interface.  相似文献   

16.
The possibility of yttrium, gadolinium, and ytterbium electrodeposition from solutions of their triflates in different ionic liquids at 100°C was investigated. It was shown that these metals could be deposited on the cathode from electrolytes based on ionic liquids with quaternary ammonium cations, and these metals do not deposit from 1-butyl-2,3-dimethylimidazolium triflate. It was established that, in the case of butyltrimethylamonium triflate usage, metal deposition occurs on a copper electrode, and it does not occur on a platinum electrode, and in 1-butyl-1-methylpirrolidinium triflate, the reduction process is possible on both electrodes. Yb3+ reduction occurs step by step via Yb2+ formation. It was shown that the limiting stage of the cathode process is adsorption of a metal cation on the electrode.  相似文献   

17.
Salicylic acid is a phytohormone, playing crucial roles in signal transduction, crop growth, and development, and defense to environmental challenges. In this study, a highly selective electrochemical sensor was designed and used to determine salicylic acid using molecularly imprinted polymers for recognition. The electrochemical sensor was fabricated via stepwise modification of gold nanoparticle–graphene–chitosan and molecularly imprinted polymers on a glassy carbon electrode. With electrochemical deposition, a gold nanoparticle–graphene–chitosan film was deposited on the glassy carbon electrode and enhanced the sensitivity. Molecularly imprinted polymers with adsorbed template salicylic acid were added to the surface of the modified electrode. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the modified electrodes. Salicylic acid in wheat was quantified by the sensor using the molecularly imprinted polymer/gold nanoparticle–graphene–chitosan/glassy carbon electrode. Concentrations of salicylic acid from 5?×?10?10 to 5?×?10?5?mol?L?1 were determined showing that the developed sensor was suitable for the analysis of food.  相似文献   

18.
It has been shown by i.r. reflection spectroscopy that a deposit of benzyltrimethyl-ammonium hydroxide is formed at the cathode during the electrochemical, reduction of the benzyltrimethylammonium cation in HMPA; this deposition has been studied in situ by polaromicrotribometry. The deposit is accompanied by the formation of o-methylbenzyldimethylamine. The very hygroscopic benzyltrimethylammonium hydroxide probably complexes residual water at the electrode and thus favours a Sommelet-Hauser rearrangement.  相似文献   

19.
A small series of N,N'-dimethyl-4,4'-bipyridinium dication derivatives (commonly known as viologens) has been synthesized and fully characterized; a short dialkoxy tether attached at the 3,3'-positions is used to alter the central dihedral angle. These angles were determined by both single-crystal X-ray diffraction and by computational studies made for the dication, radical cation, and neutral species in a solvent reservoir. The dihedral angle derived for the dication controls the first reduction potential, whereas the geometry of the resultant pi-radical cation determines the magnitude of the second reduction potential. The optical absorption spectra recorded for the various species, and especially those of the radical cations, and the EPR spectral parameters of the pi-radical cations also depend on the molecular geometry. In particular, the central dihedral angle influences the spin density distribution around the aromatic nucleus and, by way of comparison to the parent viologen, it has been possible to resolve the angle dependence from the inherent inductive effect of the strap. These results are considered in terms of the degree of electronic communication between the two aromatic rings, as controlled by the length of the tether.  相似文献   

20.
本文用在线紫外-可见光谱电化学的方法较详细地研究了在0.5M硫酸水溶液中苯胺、对苯二胺以及苯胺与对苯二胺混合体系在ITO导电玻璃电极上的电化学聚合和共聚合的过程。苯胺与对苯二胺在ITO导电玻璃上发生了电化学共聚合,在0.5M硫酸水溶液的纯苯胺和苯胺与对苯二胺共聚时的循环伏安曲线以及其对应的在线紫外-可见光谱表明对苯二胺的加入除了发生共聚外,也使聚合的速率明显加快;而且纯苯胺在循环伏安电化学聚合时在430nm处出现的吸收带因对苯二胺的加入而消失,说明对苯二胺的加入使聚合的机理与纯苯胺的聚合机理有明显不同,主要原因是苯胺产生的反应中间体可能很快与对苯二胺的阳离子自由基反应聚合。在导电玻璃ITO上的聚合物膜的反射傅立叶红外光谱表明,对苯二胺的加入可能产生了具有1,2取代模式结构,这说明了对苯二胺结合进入到聚合物中。这种共聚使得产物的表面形貌也发生了变化,聚合物扫描电镜图表明对笨二胺的加入有利于纤维状的表面形貌产生,纤维的直径可达到50nm粗细;同时用在线紫外-可见光谱研究了纯聚苯胺和共聚物随电位变化的电变色性质,结果表明在0v-0.6v之间共聚物与纯聚苯胺的在线紫外-可见光谱有明显的不同,且共聚物的电变色可逆性比纯聚苯胺好;同时SEM图也表明在0.8v电位下聚苯胺和共聚物表面形貌发生了团聚。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号