首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
量子点的物理与光电性质主要依赖于其尺寸及密度参数,而量子点的密度、高度等参数又控制着原子在衬底上的成核行为。本文采用液滴外延法在GaAs(001)表面生长金属In液滴,研究了In液滴的扩散运动与衬底温度和沉积速率之间的关系,研究发现,随着衬底温度的升高和沉积速率的降低,In液滴尺寸增大密度却降低。通过得到的实验数据,拟合关于In液滴密度与衬底温度和沉积速率的曲线,分析了量子环的生长机制,并根据原子的表面迁移行为,进一步分析其表面原子扩散机理。  相似文献   

2.
通过液滴外延法制备了GaAs/GaAs(001)同心量子双环(Concentric Quantum Double Rings, CQDRs),研究了Ga液滴沉积量对CQDRs的影响.研究结果发现:随着Ga液滴沉积量的增加,CQDRs密度降低,内环高度增高,外环高度降低,中心孔洞深度增加. CQDRs内环拟合结果表明,Ga液滴沉积量少于0.92ML(Monolayer, ML)时无法成环;外环拟合结果显示,在本实验条件下,形成外环的最小Ga液滴沉积量为3.1ML.拟合结果与实验结果一致,相关研究结果对液滴外延法制备GaAs同心量子双环具有指导意义.  相似文献   

3.
液滴外延技术不仅适用于晶格失配,也适用于晶格匹配材料系统,且易于制备低维半导体结构,如低密度量子点、环等.本文研究了液滴外延法在GaAs表面进行不同Al、Ga组分的量子点生长.在实验中用反射式高能电子衍射仪(Reflection High Energy Electron Diffraction, RHEED)对样品进行原位监控.通过控制Al、Ga液滴的沉积速率来控制液滴同时沉积在衬底上形成的组分.研究发现,随着Al组分的增加,量子点逐渐变得密集,润湿角变低.在Al组分增高超过0.5之后,出现了大小不一的量子点,且量子点密度出现指数型增长.对此进行研究分析,给出了一个经验公式,并就现象进行了解释.  相似文献   

4.
The possibility of applying low-coherent tandem interferometry to optical monitoring of the temperature of a semiconductor substrate and the thickness of a deposited layer in metal-organic vapor-phase epitaxy (MOVPE) is demonstrated for the first time. The absolute accuracy in the temperature measurements of Si, GaAs, and sapphire substrates under MOVPE conditions is limited by the calibration accuracy and is ±1°C. The accuracy in the measurement of the deposited layer thickness is 2 nm. A considerable (10–100°C) deviation of the temperature measured by a thermocouple placed inside a susceptor from the actual substrate temperature is found. A significant temperature gradient along the susceptor depending on the gas flow rate and other factors is revealed. It is shown that, owing to the high heating efficiency of sapphire substrates, there is no need to coat their reverse with absorbing layers upon heating up to 300°C or in the presence of hydrogen pressure of higher than 100 mbar.  相似文献   

5.
We present a comparative study of gallium (Ga) and aluminium (Al) droplets fabricated on GaAs (100) and AlAs (100) surfaces. Higher density of Ga droplets is achieved on AlAs surface compared with GaAs surface. Similarly, the density of Al nanostructures is higher on AlAs surface than on GaAs surface, even though different morphologies are obtained on each surface. Further, while uniform Ga droplets are formed on both GaAs and AlAs surfaces, Al rings and dots, with big inhomogeneity, are observed on GaAs and AlAs surface, respectively. This investigation suggests that size and shape of nanostructures grown by the droplet epitaxy method can be designed by employing different surfaces. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
InAs quantum dots (QDs) have been formed on GaAs (001) substrate by metal-organic vapor phase epitaxy (MOVPE) under the safer growth conditions: using tertiarybutylarsine (TBA) to replace AsH3 as the arsenic source and replacing hydrogen by pure nitrogen as the carrier gas. Effects of growth conditions on the QD formation have been investigated. It is observed that the wetting layer is stabilized with some material being transferred to form the QDs due to the strain relaxation process during the QD formation. Dot size dispersion becomes broader when the post-growth interruption is more than 20 s. Compared with normal one-step grown QDs, dot density increases greatly by 213% after employing two-step deposition for QD growth. This is explained by considering the indium-flux-dependent nucleation density at step 1 and kinetically self-limiting growth at step 2. The two photoluminescence (PL) emission peaks, 1.203 μm and 1.094 μm, from the two-step grown QDs are attributed to E1–HH1 and E1–LH1 transitions of the QDs, respectively. The measured results agree well with those received by an 8 k·p theoretical calculation. The narrow PL linewidth of ~50 nm shows high quality of the QDs. This paves the way to develop safer MOVPE process, using TBA/N2 instead of AsH3/H2, to grow QDs for device application.  相似文献   

7.
利用液滴外延法在GaAs(001)衬底表面制备InAs量子点,通过控制变量分别研究沉积速率、沉积量对In液滴在GaAs表面生长过程中的影响.使用原子力显微镜(Atomic Force Microscope, AFM)表征InAs纳米结构形貌,得出结论:(1)沉积速率主要通过影响In液滴成核率来控制液滴的密度,即随着沉积速率的增大,In原子在衬底表面的成核率增加,InAs量子点密度增加,实验符合生长动力学经典成核理论.(2)沉积量的改变主要影响液滴的熟化过程,即随着沉积量的增大,可参与生长的活跃的In原子增加,促进了液滴熟化,使得扩散坍塌的原子数量增加,导致在InAs纳米结构中出现多量子点现象.  相似文献   

8.
We report on the growth of GaAs and GaAs/AlGaAs heterostructured hexagonal pillar structures using selective area (SA) metalorganic vapor phase epitaxy (MOVPE). By performing growth on SiO2-masked (1 1 1)B GaAs substrates with circular or hexagonal hole openings, extremely uniform array of hexagonal GaAs/AlGaAs pillars consisting {1 1 0} vertical facets with their diameter of order of 100 nm were obtained. Unexpectedly, strong intense light emission was observed for the room temperature photoluminescence measurement of the pillar arrays in triangular lattice, which is promising for the application to the photonic crystals to enhance the light extraction efficiency from the materials with high refractive index. Furthermore, it was also found that hexagonal pillars with size 60 nm and large aspect ratio (>100) by reducing the size of initial hole size of mask, opening a possibility to grow nanowires using epitaxial growth.  相似文献   

9.
Bismuth nanodroplets on GaAs substrate were obtained by metalorganic vapor phase epitaxy (MOVPE). New products have been synthesized when Bi nanodroplets are heated under oxygen atmosphere. The oxidation process of Bi nanodroplets consists of a heating from the room temperature to different oxidation temperatures (350, 500, 600 °C) with a temperature rate of 14 °C/min. The annealing duration was fixed to 30 min. The presence of oxygen in the products was confirmed by energy dispersive X-ray (EDX) measurements using a scanning electron microscope (SEM). SEM images show that Bi microcomposites density decrease and their size increases with increasing annealing temperature. After X-ray diffraction analysis of the products no obvious peaks could be observed. The reflectance spectra of the products were studied in spectral domains ranged from 200 nm to 1100 nm. By fitting the reflectivity signal, we extracted the thickness of the products and their refractive index variation versus wavelength. The results show that the thickness of the samples increases with increasing annealing temperature. The photoluminescence (PL) spectra under excitation at 325 nm shows a broad emission centered at around 1.92 eV.  相似文献   

10.
In this paper, GaAs thin film has been deposited on thermally desorbed (1 0 0) GaAs substrate using laser molecular beam epitaxy. Scanning electron microscopy, in situ reflection high energy electron diffraction and in situ X-ray photoelectron spectroscopy are applied for evaluation of the surface morphology and chemistry during growth process. The results show that a high density of pits is formed on the surface of GaAs substrate after thermal treatment and the epitaxial thin film heals itself by a step flow growth, resulting in a smoother surface morphology. Moreover, it is found that the incorporation of As species into GaAs epilayer is more efficient in laser molecular beam epitaxy than conventional molecular beam epitaxy. We suggest the growth process is impacted by surface chemistry and morphology of GaAs substrate after thermal treatment and the growth mechanisms are discussed in details.  相似文献   

11.
The structural complexity of GaAs quantum‐dot pairs has been revealed by cross‐sectional transmission electron microscopy. As a result of high‐temperature droplet epitaxy, the AlGaAs substrate beneath the quantum‐dot pairs is no longer immobile and its reconstruction is observed to define the crystallization of gallium droplets under an arsenic flux. The GaAs quantum‐dot pairs are immersed into the substrate and further confined by the re‐distributed AlGaAs materials above the substrate plane. There are two underlying mechanisms responsible for the final nanostructure configuration, melt‐back etching by the gallium droplets and preferential crystallization of gallium around reconstructed sidewalls. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Reflection high-energy electron diffraction (RHEED) and atomic force microscopy (AFM) measurements were used to investigate the dependences of the formation process and the strain on the As/In ratio and the substrate temperature of InAs quantum dots (QDs) grown on GaAs substrates by using molecular beam epitaxy. The thickness of the InAs wetting layer and the shape and the size of the InAs QDs were significantly affected by the As/In ratio and the substrate temperature. The strains in the InAs layer and the GaAs substrate were studied by using RHEED patterns. The magnitude in strain of the InAs QDs formed at a low substrate temperature was larger than that in InAs QDs grown at high substrate temperature. The present results can help to improve the understanding of the formation process and the strain effect in InAs QDs.  相似文献   

13.
易新建  李毅  郝建华  张新宇  G.K.WONG 《物理学报》1998,47(11):1896-1899
在GaAs(001)衬底上,用分子束外延生长Sb(111)薄膜,用反射式高能电子衍射仪原位监控生长过程,用透射电子显微镜观察薄膜结构,并用van der Pauw方法测量了电阻率随生长温度的变化,观察到Sb薄膜半金属/半导体转变及其量子尺寸效应. 关键词:  相似文献   

14.
InGaAs/GaAsP strain-compensated multiple quantum wells (SCMQWs) and strained InGaAs/GaAsmultiple quantum wells (MQWs) were grown on GaAs substrates by metal organic vapor phase epitaxy(MOVPE). The results of double crystal X-ray diffraction (DCXRD) revealed that strain relief had beenpartly accommodated by the misfit dislocation formation in the strained MQW material. It led to thatthe full width half maximums (FWHMs) of superlattice satellite peaks are broader than those of SCMQWstructures, and there was no detectable room temperature photoluminecence(RT-PL)for the strained  相似文献   

15.
采用分子束外延技术(MBE)在Ga As衬底上外延生长高In组分(40%)In Ga NAs/Ga As量子阱材料,工作波长覆盖1.3~1.55μm光纤通信波段。利用室温光致发光(PL)光谱研究了N原子并入的生长机制和In Ga NAs/Ga As量子阱的生长特性。结果表明:N组分增加会引入大量非辐射复合中心;随着生长温度从480℃升高到580℃,N摩尔分数从2%迅速下降到0.2%;N并入组分几乎不受In组分和As压的影响,黏附系数接近1;生长温度在410℃、Ⅴ/Ⅲ束流比在25左右时,In_(0.4)Ga_(0.6)N_(0.01)As_(0.99)/Ga As量子阱PL发光强度最大,缺陷和位错最少;高生长速率可以获得较短的表面迁移长度和较好的晶体质量。  相似文献   

16.
The conditions for producing mirror-smooth Ge buffer layers of uniform size on Si(100) and Si(111) substrates by means of hot wire chemical vapor deposition (HW-CVD) at a low temperature (350°C) are determined. Single-crystal GaN and GaAs films and low-dimensional GaAs/QWInGaAs/ GaAs/QWInGaAs/GaAs/Ge/Si structures of uniform smoothness are obtained via MOVPE at reduced pressures. Their quantum wells are found to be characterized by intense photoluminescence comparable in intensity to that produced on GaAs substrates.  相似文献   

17.
ZnO thin films have been grown on a-plane (1,1,−2,0) sapphire substrates by metalorganic vapor phase epitaxy (MOVPE) at low substrate temperature of 350 °C. It is showed that the crystal and electrical quality of the thin films was improved by using a ZnO buffer layer. The photoluminescence (PL) measurements indicate that the ZnO thin films grown at such a low substrate temperature have a strong UV emission.  相似文献   

18.
红光InAlAs量子点的结构和光学性质   总被引:1,自引:1,他引:0  
周伟  梁基本 《发光学报》1999,20(3):230-234
利用MBE方法在(001)衬底上成功地生长密度大、尺寸小、发红光的InAlAs/AlGaAs量子点结构。通过原子力显微镜观察表明,InAlAs量子的密度和大小都随覆盖厚度的增加而增大;发现Al原子的表面迁移率决定InAlAs量子点的形貌,光荧光谱证实了量子点的发光峰值在红光范围,并结合形貌的统计得到了量子点的发光峰展宽主要昌受量子点的横向尺寸影响。  相似文献   

19.
The effects of substrate temperature upon the optical property, composition and surface morphology have been investigated on nominally undoped Zn1−xMgxTe layers grown on (1 0 0) ZnTe substrates by atmospheric pressure metal organic vapor phase epitaxy (MOVPE). It was found that Mg composition increases with decreasing substrate temperature. The result of low temperature photoluminescence (PL) measurement suggests that the optical quality of Zn1−xMgxTe layers becomes better with decreasing substrate temperature. On the other hand, there is a narrow range of optimal substrate temperature for a smooth surface morphology. For all the layers, a two-mode behavior with ZnTe- and MgTe-like longitudinal optical phonon modes was confirmed by Raman scattering.  相似文献   

20.
The compositional distribution of InAs quantum dots grown by molecular beam epitaxy on GaAs capped InAs quantum dots has been studied in this work. Upper quantum dots are nucleated preferentially on top of the quantum dots underneath, which have been nucleated by droplet epitaxy. The growth process of these nanostructures, which are usually called as quantum dots molecules, has been explained. In order to understand this growth process, the analysis of the strain has been carried out from a 3D model of the nanostructure built from transmission electron microscopy images sensitive to the composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号