首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The problem of a spherically symmetric plasmoid placed in a linearly polarized uniform quasistatic electromagnetic field is considered. The electric field in the vicinity of a plasmoid with a Gaussian electron density distribution is calculated. The results of calculations are compared with the known solution for a spherical plasmoid with a uniform density. The possibility of the transformation of an initial plasmoid that arises in an electrodeless microwave gas discharge into a microwave streamer is discussed.  相似文献   

2.
This paper describes the use of non-contact ultrasound for the evaluation of concrete. Micromachined capacitance transducers are used to transmit ultrasonic longitudinal chirp signals through concrete samples using air as the coupling medium, and a pulse compression technique is then employed for measurement of time of flight through the sample. The effect on the ultrasonic wave speed of storing concrete samples, made with the same water/cement ratio, at different humidity levels is investigated. It is shown that there is a correlation between humidity and speed of sound, allowing a correction factor for humidity to be derived. A strong positive linear correlation between aggregate content and speed of sound was then observed; there was no obvious correlation between compressive strength and speed of sound. The results from the non-contact system are compared with that from a contact system, and conclusions drawn concerning coupling of energy into the samples.  相似文献   

3.
·OH在众多领域中具有非常重要的作用,在国际上引起了广泛关注,而大气压等离子体射流由于不需要真空、装置简单易于携带,且具有高浓度活性粒子、高电子温度、低射流温度等优点,具有极强的应用前景,成为气体放电领域的重要研究课题。特别是如何诱导等离子体射流中·OH的产生已成为等离子体射流领域一个新的研究热点。国外率先报道了将水蒸汽以一定的比例混入等离子体射流工作气体中以诱导产生大量·OH的研究,然而当含水量较高时,射流会剧烈摆动,放电变得十分不均匀、不稳定。为此,本文设计了一种大气压双环电极氩气等离子体射流诱导水产生·OH的装置,通过引入超声雾化装置增加等离子体羽周围的湿度以提高·OH含量,重点研究了不同电压、流量下诱导水生成OH(A2Σ+)的生成规律;利用发射光谱法测试了装置产生·OH的含量;并利用810.41和811.48 nm这两条Ar原子光谱线,计算了等离子体羽中的电子温度。结果表明等离子体羽可以诱导周围的水产生·OH,且随电压从20 kV增大到28 kV时,OH(A2Σ+)的产量逐渐增大;而当氩气流量从100 L·h-1增大到200 L·h-1时,·OH产量随着流量的增大而增大,但是当氩气流量从200 L·h-1增大到600 L·h-1时,·OH产量随着流量的增大而不断减小。OH(A2Σ+)的产量和电子温度变化趋势完全一致,证明了·OH的产量主要受电子温度的影响。  相似文献   

4.
The study of the propagation of ultrasound within a gas jet is extended to obtain waveguide effects, where the jet collimates the ultrasonic beam from a transducer within the flow. Two methods have been investigated to achieve this--cooling the gas within the air jet, and using a different gas whose acoustic velocity is lower than air. Cooling an air jet to a temperature less than that of the surrounding air produced a noticeable waveguide effect. In addition, studies have been carried out using other selected gases, such as carbon dioxide (CO2) with a lower acoustic velocity than air, and helium (He) with a higher value. The former gas enhanced confinement of the ultrasonic beam, whereas the latter caused divergence. An ideal solution was found to be a CO2/air mixture, which produced a well-collimated sound field along the axis, while limiting the excess attenuation of pure CO2 gas jets. The effectiveness of the waveguide using mixed gas jets in producing images in air-coupled testing of solids is demonstrated.  相似文献   

5.
Ultrasonic drying of foodstuff in a fluidized bed: Parametric study   总被引:1,自引:0,他引:1  
The application of high power ultrasound for dehydration of porous materials may be very effective in processes in which heat-sensitive materials such as foodstuffs have to be treated. In fact, high-intensity ultrasonic vibrations are capable of increasing heat and mass transfer processes in materials. The application of ultrasonic energy can be made alone or in combination with other kind of energy such as hot-air. In this case, ultrasound helps in reducing temperature or treatment time. The aim of this work is to study the effect of air flow rate, ultrasonic power and mass loading on hot-air drying assisted by a new power ultrasonic system. The drying chamber is an aluminium vibrating cylinder, which is able to create a high intensity ultrasonic field in the gas medium. To that purpose the chamber is driven at its centre by a power ultrasonic vibrator at 21.8 kHz. Drying kinetics of carrot cubes and lemon peel cylinders were carried out at 40 degrees C for different air velocities, with and without ultrasound. The results show that the effect of ultrasound on drying rate is affected by air flow rate, ultrasonic power and mass loading. In fact, at high air velocities the acoustic field inside the chamber is disturbed and the effect of ultrasound on drying kinetics diminishes.  相似文献   

6.
The directional characteristics of an ultrasonic signal have been studied during propagation within an axial gas jet. The effects of nozzle shape, nozzle diameter, and variations in jet velocity, temperature and gas composition have been investigated. At high flow velocities of an air jet, divergence of the ultrasonic beam was observed. This was attributed to the effects of refraction, caused by increased acoustic velocities in the direction of the flow. An effective waveguide was also demonstrated by cooling the air jet to below ambient temperatures, so that the acoustic velocity in the air jet was lower than that in the surrounding atmosphere. This could also be achieved by using carbon dioxide mixed with air, whereas the use of helium led to increased divergence. The result is likely to be of use in air-coupled ultrasonic materials inspection.  相似文献   

7.
Spectral investigations of the space-time distribution of reactive impulse plasma ejected from a coaxial accelerator were carried out. A two-zone structure of the plasmoid, related to interactions between the gas plasma and the accelerator electrode, was found. The isotropization kinetics of the chemical composition of the plasmoid was determined.  相似文献   

8.
In the industrial cleaning processes either organic solvents or water solutions are used as the cleaning media. The primary causative factor of ultrasonic cleaning is cavitation. Below are presented results of investigations into the influence of temperature, gas content and the solution level in an ultrasonic cleaner on cavitation intensity in the tap water. Previous investigations have revealed a great deal of information on the influence of the above factors on the cavitation intensity and these are confirmed. It has now been found that the tap water reaches the highest cavitation intensity at temperatures below 20 degrees C but during heating at higher temperatures (20-40 degrees C) a second peak of cavitation intensity may appear-depending on the height of water in the bath and air content.  相似文献   

9.
10.
Liang-Yu Wu 《Physics letters. A》2008,372(15):2701-2705
The thermal effects on the refractive direction of a sonic crystal consisted of steel rods in air background is investigated. By means of varying the temperature, the refractive direction and the range of the incident angle with the negative refraction are changed accordingly due to the variations of the air density and sound speed. The focus behaviors, intensity and distance, of the sonic crystal plane lens with varying temperature are studied. Moreover, at certain frequencies and incident angles, the refractive angles can be changed from negative to positive by varying the temperature of a sonic crystal with air background. The tunable sonic crystal can be used to design various novel ultrasonic devices.  相似文献   

11.
Modal characteristics of a generic micro-drill and experiments on the micro-drilling with superimposing of longitudinal ultrasonic vibration are presented. Finite element (FE) analysis is used for identification of eigenfrequencies and modes of the drill. Dynamic influence of the drill shank is discussed and a hybrid model is proposed to account for it. The model is proven to be efficient for complicated drill models and advanced analysis. A high speed ultrasonically assisted micro-drilling (UAMD) system is established with air bearings and longitudinally vibrating workpiece. During the experiments the thrust force reduction is studied as well as effects of ultrasonic vibration frequency and rotational speed. A correlation study was conducted between the thrust force measurements and simulations from a nonlinear force model. It can be seen that the current one-dimensional model is not sufficient to describe the complete behavior of the drill. The FE model and force experimental results can be utilized for a full dynamic model of the UAMD system to study vibration and the cutting mechanism in the future.  相似文献   

12.
A microbubble generator with a cylindrical hollow ultrasonic horn (HUSH), gas flow path, and an orifice inside it can produce high ultrasonic pressure around the generated microbubbles. We used this microbubble generator with a HUSH as a sonochemical reactor for the degradation of indigo carmine and evaluated the sonochemical reaction by simply inserting the horn end into a liquid. The experimental results revealed that the ultrasonic irradiation around ultrasonically generated microbubbles effectively degraded indigo carmine in water. In addition, degradation experiments performed by varying the ultrasonic power and gas flow rates indicated that a continuous gas supply and ultrasonic pressure were required for generating the microbubbles, without the generation of millimeter-scale bubbles, to enhance the sonochemical reaction in water.  相似文献   

13.
The use of cavitation for improving biofilm cleaning is of great interest. There is no system at present that removes the biofilm from medical implants effectively and specifically from dental implants. Cavitation generated by a vibrating dental ultrasonic scaler tip can clean biomaterials such as dental implants. However, the cleaning process must be significantly accelerated for clinical applications. In this study we investigated whether the cavitation could be increased, by operating the scaler in carbonated water with different CO2 concentrations. The cavitation around an ultrasonic scaler tip was recorded with high speed imaging. Image analysis was used to calculate the area of cavitation. Bacterial biofilm was grown on surfaces and its removal was imaged with a high speed camera using the ultrasonic scaler in still and carbonated water. Cavitation increases significantly with increasing carbonation. Cavitation also started earlier around the tips when they were in carbonated water compared to non-carbonated water. Significantly more biofilm was removed when the scaler was operated in carbonated water. Our results suggest that using carbonated water could significantly increase and accelerate cavitation around ultrasonic scalers in a clinical situation and thus improve biofilm removal from dental implants and other biomaterials.  相似文献   

14.
换热器内超声空化效应影响因素数值研究   总被引:2,自引:0,他引:2  
对超声波参数和换热器参数对超声波空化效应影响的研究,能够找出最佳的超声波参数使其防除垢效果更好。本文利用数值计算方法研究了超声波功率、频率和换热器内介质温度以及换热管的型式对超声空化的影响。结果表明,随着超声波功率的增大,水中汽含率也增大,而且变化也相对激烈;随着频率的增加汽含率先增大后降低,20 kHz为最佳频率;介质温度越高,空化效应越强烈;管径波动较多的波纹管更有利于空化效应的产生和发展。  相似文献   

15.
Results are presented from studies of a high-pressure electrodeless breakdown in air at the focus of a standing wave in a high-Q quasi-optical two-mirror resonator pumped by single microwave pulses. In the experiment, the breakdown occurred at the front of the pulse of the resonator field. The breakdown field substantially exceeded the critical level and, under fixed conditions, showed a scatter from pulse to pulse. It is shown that the experimentally found excess in the threshold breakdown field over the critical level is due to the fact that the resonator field increases as a discharge plasmoid forms during breakdown and that the appearance of an electron initiating breakdown in a gas is a random event.  相似文献   

16.
Exhaust gas recirculation (EGR) technology can be used in internal combustion engines to reduce NOx emission and improve fuel economy. However, it also affects the end-gas autoignition and engine knock since NOx in EGR can promote ignition. In this study, effects of NOx addition on autoignition and detonation development in dimethyl ether (DME)/air mixture under engine-relevant conditions are investigated. Numerical simulation considering both low-temperature and high-temperature chemistry is conducted. First the kinetic effects of NOx addition on the negative temperature coefficient (NTC) regime are assessed and interpreted. It is found that NOx addition greatly promotes both low-temperature and high-temperature ignition stages mainly through increasing OH production. Then the autoignitive reaction front propagation induced by either local NO accumulation or a cold spot within NTC regime with different amounts of NO addition is investigated. For the first time, supersonic autoignition modes including detonation induced by local NO accumulations are identified. This indicates that local accumulation of NOx in end gas might induce super-knock in engines with EGR. A new parameter quantifying the ratio of sound speed to average reaction front propagation speed is introduced to identify the regimes for different autoignition modes. Compared to the traditional counterpart parameter used in previous studies, this new parameter is more suitable since it yields a detonation development regime in a C-shaped curve which is almost unaffected by the initial conditions. The results in this study may provide fundamental insights into knocking mechanism in engines using EGR technology.  相似文献   

17.
In the current study, kinetics of synthesis of 2-phenylvaleronitrile (PVN) was successfully carried out by selective C-alkylation of benzyl cyanide (BC) with n-bromopropane (BP) using aqueous KOH and catalyzed by TBAB under ultrasonic (300W) assisted organic solvent-free conditions. Selective monoalkylation of benzyl cyanide has been achieved by controlling the reaction conditions and has been followed using gas chromatogram. The effects of various parameters such as agitation speed, catalyst concentration, KOH concentration, benzyl cyanide concentration, volume of water, ultrasonic frequency and temperature were studied systematically to understand their influence on the rate of the reaction. The experimental observations are consistent with an interfacial-type process. Further the kinetic results demonstrate clearly, that ultrasonic assisted phase-transfer catalysis significantly increased the reaction rate when compared to silent reactions.  相似文献   

18.
The outwardly propagating spherical flame (OPF) method is popularly used to measure the laminar flame speed (LFS). Recently, great efforts have been devoted to improving the accuracy of the LFS measurement from OPF. In the OPF method, several assumptions are made. For examples, the burned gas is assumed to be static and in chemical equilibrium. However, these assumptions may not be satisfied under certain conditions. Here we consider low-pressure and super-adiabatic propagating spherical flames, for which chemical non-equilibrium exists and the burned gas may not be static. The objective is to assess the chemical non-equilibrium effects on the accuracy of LFS measurement from the OPF method. Numerical simulations considering detailed chemistry and transport are conducted. Stoichiometric methane/air flames at sub-atmospheric pressures and methane/oxygen flames at different equivalence ratios are considered. At low pressures, broad heat release zone is observed and the burned gas cannot quickly reach the adiabatic flame temperature, indicating the existence of chemical non-equilibrium of burned gas. Positive flow in the burned gas is identified and it is shown to become stronger at lower initial pressure. Consequently, the LFS measurement from OPF at low pressures is not accurate if the burned gas is assumed to be static and at chemical equilibrium. For super-adiabatic spherical flames, the burned gas speed is found to be negative due to the local temperature overshoot at the flame front. Such negative speed of burned gas can also reduce the accuracy of LFS measurement. It is recommended that the direct method measuring both flame propagation speed and flow speed of unburned gas should be used to determine the LFS at low pressures or for mixtures with super-adiabatic flame temperature.  相似文献   

19.
Laminar flame speeds of premixed jet fuel/air with the addition of hydrogen, methane and ethylene are measured in a constant-volume bomb at an initial temperature of 420 K, initial pressure of 3 atm, equivalence ratios of 0.6–1.5 and gas mass fractions of 0–50%. The experimental results show that the addition of hydrogen and ethylene can significantly improve the laminar flame speed of the liquid jet fuel, while the addition of methane shows a weak inhibitory effect, and these effects are relatively remarkable on the fuel-rich conditions. The laminar flame speed of the dual fuels/air is linearly dependent on the additional gas mass fraction. A kinetic analysis indicates that the gas addition causes both thermodynamic and chemical kinetic effects on the laminar flame speed of the dual fuels/air. The adiabatic temperature increases and decreases with the addition of hydrogen/ethylene and methane, respectively. A sensitivity analysis shows that the reactions concerning to the H, CH3 and C2H3 radicals become significant with the addition of hydrogen, methane and ethylene, respectively, and that the different values of the rate of product (ROP) of these species via the critical reactions lead to a different promotional or inhibitory effect on the fuel-rich and fuel-lean conditions.  相似文献   

20.
高速气流中激光加热平板数值模拟与分析   总被引:1,自引:0,他引:1       下载免费PDF全文
 采用流固耦合方法,数值模拟了高速流场中激光作用下来流速度对平板温度分布的影响。结果表明:无激光辐照时,高速气流中平板有较高的气动生热平衡温度,且平板-气流之间的换热系数随来流速度增大而增大;在平板前沿换热系数增长最快,沿平板长度方向增速趋于平缓。分析了激光辐照时高速气流中激光加热平板的温度分布情况,考察了来流速度不同时,气动生热、散热和激光辐照对平板温度的影响,给出了激光辐照后的温升情况和温度分布,分析了在不同速度来流下,对流散热、摩擦生热和激光加热之间的竞争关系,结果表明,平板温度具体分布主要是加热过程竞争的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号