首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent pharmaceutical regulatory documents have stressed the critical importance of applying quality by design (QbD) principles for in-depth process understanding to ensure that product quality is built in by design. This article outlines the application of QbD concepts to the development of analytical separation methods, for example chromatography and capillary electrophoresis. QbD tools, for example risk assessment and design of experiments, enable enhanced quality to be integrated into the analytical method, enabling earlier understanding and identification of variables affecting method performance. A QbD guide is described, from identification of quality target product profile to definition of control strategy, emphasizing the main differences from the traditional quality by testing (QbT) approach. The different ways several authors have treated single QbD steps of method development are reviewed and compared. In a final section on outlook, attention is focused on general issues which have arisen from the surveyed literature, and on the need to change the researcher’s mindset from the QbT to QbD approach as an important analytical trend for the near future.
Figure
Quality by design guide for analytical method development  相似文献   

2.
Eight ionic liquids (ILs) are subjected to both positive-ion and negative-ion direct analyses in real time (DART) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS). First, their ability to deliver evenly distributed cluster ion series covering a wide m/z range is explored. Then, one of the ILs exhibiting particularly useful cluster ion series in either ion polarity is applied for mass calibration. Using 1-butyl-3-methylimidazolium tricyanomethide delivers positive cluster ions suitable for mass calibration in the m/z 100–4,000 range and covers the m/z 100–2,000 range in negative-ion DART-MS. The corresponding mass reference lists are provided for either polarity. Furthermore, based on 1-butyl-3-methylimidazolium tricyanomethide, a high-mass record of m/z?>?5,000 for positive-ion DART-MS is presented. The mass calibration procedure is finally validated by application to established standard compounds such as polydimethylsiloxanes, perfluorononanoic acid, and Ultramark 1621, a mixture of hexakis (fluoroalkoxy) phosphazenes. Further proof is presented by consistent exact mass differences between adjacent cluster ions.
Figure
Direct analysis in real time mass spectrometry (DART-MS) can deliver ionic liquid cluster ions reaching well beyond m/z 5,000. These positive and negative cluster ions may well serve for wide-range mass calibration in DART-MS  相似文献   

3.
Electrospray ionization (ESI) using wooden tips as solid substrates allows direct ionization of various samples and their simple and efficient analyses by mass spectrometry (MS). In this study, wooden-tip ESI-MS was used for pharmaceutical analysis. A wide variety of active components present in pharmaceuticals with forms of tablets, capsules, granules, dry suspensions, suspensions, drops, and oral liquids, etc., were all successfully ionized directly for mass spectrometric analysis. Trace degradation products were also sensitively detected using wooden-tip ESI-MS. This strategy was extended to construct chemical fingerprints of herbal products containing complex and unknown components, and the fingerprints provided valuable information for their quality assessment and origin tracing. Our experimental data demonstrated that wooden-tip ESI-MS is a useful tool for rapid pharmaceutical analysis, with high sensitivity and wide applicability, showing promising perspectives for quality assessment and control, authentication, and origin tracing of pharmaceuticals.
Figure
?  相似文献   

4.
Direct analysis in real time mass spectrometry (DART-MS) was used to analyze ionic liquids (ILs) containing either imidazolium or phosphonium cations combined with different types of inorganic and organic anions. Ionic liquids were directly inserted into the ionization source using a glass probe without dissolution into organic solvents. Mass spectra of the ILs were collected in both positive and negative mode with a linear ion-trap instrument. The intact cation of the compound was typically the dominant peak in positive mass spectra and cluster ion formation was present. Some individual anions were not readily observed in the negative mass spectra (based on the type of anion); however, the mass difference of adjacent cluster ions equal the mass of a complete IL and the anion mass could be verified by subtracting the known cation mass. The degree and intensity of the cluster ion formations was found to be dependent on the nature of the specific ILs as well as the DART temperature gas stream.
Figure
?  相似文献   

5.
We describe a method for the determination of memantine in plasma by use of the derivatization reagent o-(pentafluorobenzyloxycarbonyl)-benzoyl chloride. Memantine can be quantitatively analyzed down to 49?pg per mL of plasma using a 250?μL sample and negative ion chemical ionisation mass spectrometry (GC-NICI-MS). Plasma samples were made alkaline with carbonate buffer and extracted with n-hexane. The extracts were treated with reagent solution for 20?min, concentrated, and submitted to GC-NICI-MS. The method is rapid because extraction and derivatization occur in one single step. Amantadine is used as an internal standard. The utility and robustness of the assay is demonstrated by giving data on specificity, linearity, accuracy and precision, benchtop stability, freeze–thaw stability, autosampler stability, aliquot analysis, and prospective analytical batch size accuracy.
Figure
We describe a method for the determination of memantine in plasma by use of the derivatization reagent o-(pentafluorobenzyloxycarbonyl)-benzoyl chloride. Memantine can be quantitatively analyzed down to 49?pg per mL of plasma using a 250?μL sample and negative ion chemical ionisation mass spectrometry (GC-NICI-MS). Amantadine is used as an internal standard. The utility and robustness of the assay is demonstrated by giving data on specificity, linearity, accuracy and precision, benchtop stability, freeze–thaw stability, autosampler stability, aliquot analysis, and prospective analytical batch size accuracy.  相似文献   

6.
A high-throughput method for rapid screening of active ingredients in drugs has been developed with mass spectrometry coupled to a low-temperature plasma (LTP) probe ion source. Without sample preparation or pretreatment, the active ingredients of 11 types of commercial pharmaceuticals, including hormones, antipyretic analgesics, cardiovascular, digestant, neuro-psychotherapeutic, diuretic, antithyroid, sulfa anti-inflammatory, antiparastic, sedative-hypnotics, and antibacterial, were directly desorbed/ionized and detected by a linear ion trap mass spectrometry (MS). The structures of these ingredients were elucidated by tandem MS. The analysis of 18 methyltestosterone tablets could be accomplished within 1.9 min, which allows fast detection with a speed of approximate 600 samples within 1 h. This work demonstrated that LTP probe ion source combined with MS is a high-throughput method for screening of pharmaceuticals and potentially applied to on-line quality control in pharmaceutical industry.
Figure
Schematic diagram of LTP probe for ambient ionization MS  相似文献   

7.
A comprehensive method for the quantitative residue analysis of trace levels of 22 ß-lactam antibiotics, including penicillins, cephalosporins, and carbapenems, in poultry muscle by liquid chromatography in combination with tandem mass spectrometric detection is reported. The samples analyzed for ß-lactam residues are hydrolyzed using piperidine in order to improve compound stability and to include the total residue content of the cephalosporin ceftifour. The reaction procedure was optimized using a full experimental design. Following detailed isotope labeling, tandem mass spectrometry studies and exact mass measurements using high-resolution mass spectrometry reaction schemes could be proposed for all ß-lactams studied. The main reaction occurring is the hydrolysis of the ß-lactam ring under formation of the piperidine substituted amide. For some ß-lactams, multiple isobaric hydrolysis reaction products are obtained, in accordance with expectations, but this did not hamper quantitative analysis. The final method was fully validated as a quantitative confirmatory residue analysis method according to Commission Decision 2002/657/EC and showed satisfactory quantitative performance for all compounds with trueness between 80 and 110 % and within-laboratory reproducibility below 22 % at target level, except for biapenem. For biapenem, the method proved to be suitable for qualitative analysis only.
Figure
Graphical representation of the analysis of penicillins, cephalosporins and carbapenems using LC-MS/MS  相似文献   

8.
Liquid chromatography coupled to multistage mass spectrometry (LC-MSn) is being used increasingly in pharmaceutical research and for quality control in herbal medicines because of its superior sensitivity and selectivity. In this study, a rapid, high-resolution liquid chromatography-mass spectrometry (LC-MSn) method was developed to separate and identify alkaloids in the root extract of goldenseal, which is one of the 20 most popular herbal supplements used worldwide. In total, 28 alkaloids were separated and characterized including one novel compound and 21 identified, or tentatively identified, for the first time in goldenseal. The current high-resolution LC-MSn method provides a rapid and definitive means of profiling the composition of goldenseal root and will provide a useful tool in understanding the bioactivity of this medicinal plant.
Figure
Extraction and Orbitrap LC-MSn analysis of Goldenseal root for alkaloid identification  相似文献   

9.
Monitoring carnitine and acetylcarnitine levels in biological fluids is a powerful tool for diagnostic studies. Research has recently shown that the analysis of carnitine and related compounds in clinical samples can be accomplished by different analytical approaches. Because of the polar and ionic nature of the analytes and matrix complexity, accurate quantitation is a highly challenging task. Thus, sample processing factors, preparation/cleanup procedures, and chromatographic/ionization/detection parameters were evaluated. On the basis of the results obtained, a rapid, selective, sensitive method based on hydrophilic interaction liquid chromatography–tandem mass spectrometry for the analysis of carnitine and acetylcarnitine in serum and urine samples is proposed. The matrix effect was assessed. The proposed approach was validated, the limits of detection were in the nanomolar range, and carnitine and acetylcarnitine levels were found within the micromolar range in both types of sample.
Figure
Experimental workflow for the carnitine and acetylcarnitine determination in biological samples by HILIC-MS/MS  相似文献   

10.
A method is presented for the quantitative determination of memantine in plasma by use of the derivatization reagent o-(pentafluorobenzyloxycarbonyl)-2,3,4,5-tetrafluorobenzoyl chloride. Memantine can be quantitatively analyzed down to 49?pg per mL of plasma using a 250?μL sample and negative ion chemical ionisation mass spectrometry (GC-NICI-MS). Plasma samples were made alkaline with carbonate buffer and extracted with n-hexane. The extracts were treated with reagent solution for 20?min, concentrated, and submitted to GC-NICI-MS. The method is rapid because extraction and derivatization occur in one single step. Amantadine is used as an internal standard. The utility and robustness of the assay is demonstrated by giving data on specificity, linearity, accuracy and precision, benchtop stability, freeze-thaw stability, autosampler stability, aliquot analysis, and prospective analytical batch size accuracy.
Figure
Chemical structure of N-(o-pentafluorobenzyloxycarbonyl)- 2,3,4,5-tetrafluorobenzoyl)memantine  相似文献   

11.
An introduction to the principle and possibilities of the new method of circular dichroism laser mass spectrometry is given and its state of development is reviewed. This method allows enantiosensitive, mass-selective probing of chiral molecules. It is based on the combination of resonance-enhanced multiphoton ionization with circularly polarized light and specially modified time-of-flight mass spectrometry. As an example, application to carbonyls is presented.
Figure
The combination of resonance enhanced multiphoton ionization and circular dichroism performed in a time-of-flight mass spectrometer allows mass selective enantio-sensitive spectroscopy with new features for chiral analysis  相似文献   

12.
Emerging contaminants are suspected to cause adverse effects in humans and wildlife. Aquatic ecosystems are continuously contaminated by agricultural and industrial sources. To establish a causality relationship between the occurrence of contaminants in the environment and disease, experiments including all environmental matrices must be performed. Consequently, the current analytical tools must be improved. A new multi-residue method for analysing 15 emerging pollutants in sediments based on the Quick, Easy, Cheap, Effective, Rugged and Safe approach is reported. The development of such a multirisque, inter-family method for sediment including pharmaceuticals, pesticides, personal care products and plasticizers is reported for the first time. The procedure involves salting-out liquid–liquid extraction using acetonitrile and clean-up with dispersive solid phase extraction, followed by liquid chromatography coupled with tandem mass spectrometry. The validated analytical procedure exhibited recoveries between 40 and 98 % for every target compound. This methodology facilitated the determination of pollutant contents at nanogram-per-gram concentrations.
Figure
?  相似文献   

13.
A method based on gas chromatography-atmospheric pressure chemical ionization-mass spectrometry (GC-APCI-MS) has been developed for the analysis of pesticides in meat by using quadrupole-time of flight mass spectrometry (QTOF-MS). Ionization and MS conditions were studied for 71 compounds, although only 51 showed acceptable performance. The protonated form of the analytes was mainly found ([M?+?H]+), although some compounds generated the molecular ion (M+?). A fast and generic extraction procedure was applied in sample pretreatment. The analytical method was suitable for qualitative analysis, and it was also evaluated for quantitative analysis, obtaining adequate recovery and precision values for most of the studied analytes at two concentration levels (50 and 150 μg/kg). Several operational drawbacks were found with this instrument, such as slow stabilization and moderate sensitivity, although the fast switching between LC and GC allows the increase of its applicability.
Figure
?  相似文献   

14.
The detection of regulated and forbidden herbs in pharmaceutical preparations and nutritional supplements is a growing problem for laboratories charged with the analysis of illegal pharmaceutical preparations and counterfeit medicines. This article presents a feasibility study of the use of chromatographic fingerprints for the detection of plants in pharmaceutical preparations. Fingerprints were developed for three non-regulated common herbal products—Rhamnus purshiana, Passiflora incarnata L. and Crataegus monogyna—and this was done by combining three different types of detection: diode-array detection, evaporative light scattering detection and mass spectrometry. It is shown that these plants could be detected in respective triturations of the dry extracts with lactose and three different herbal matrices as well as in commercial preparations purchased on the open market.
Figure
Detection of Passiflora incarnata in three commercial preparations using chromatographic fingerprints  相似文献   

15.
A fast reversed-phase liquid chromatography-electrospray ionization triple quadrupole mass spectrometry method was developed for the molecular species profiling of glycerophosphocholine (GPC) and sphingomyelin (SM) in total lipid extracts. A two-stage mass spectrometry strategy was adopted to analyze in detail the composition of lipid molecular species. Precursor ion analysis was first conducted to obtain the preliminary composition profile of the phosphorylcholine-containing lipid. The product ion spectra were sequentially acquired for each recorded signal to determine the molecular structure of the lipid. A total of 150 GPCs and 12 SMs were identified in the fetal mouse lung with relative amounts ranging from 13.7?% to less than 0.002?% (normalizing by the total signal response). A column packed with core–shell particles was used to obtain excellent chromatographic separation with a shorter time demand in a conventional high-performance liquid chromatography system. Considering the compromise between the chromatographic efficiency and the electrospray signal response, the optimization of the mobile phase improves the chromatographic plate number to approximately 40,000 and the detection limits to less than 0.001?mg/L. The applicability of the method was validated through a study of chemically induced early lung maturation. The metabolic alteration in the fetal mouse lung was clearly reflected in the GPC and SM composition with several characteristics of the molecular structure that related to the character of the phospholipid layer upon the epithelial lining of alveoli and the relevant cell function. The results indicated that this analytical strategy is reliable for comprehensive molecular species profiling of GPC and SM and might be extended to the analysis of other phospholipids.
Figure
Glycerophosphocholine and sphingomyelin molecular species profiling using a fast HPLC/QqQ-MS method adopting a two-stage mass spectrometry strategy composed of preliminary phosphorylcholine-containing lipid profiling and sequential lipid molecular structure determination  相似文献   

16.
A method for the simultaneous analysis of nucleosides and nucleotides in infant formula using reversed-phase liquid chromatography–tandem mass spectrometry is described. This approach is advantageous for compliance testing of infant formula over other LC-MS methods in which only nucleotides or nucleosides are measured. Following sample dissolution, protein was removed by centrifugal ultrafiltration. Chromatographic analyses were performed using a C18 stationary phase and gradient elution of an ammonium acetate/bicarbonate buffer, mass spectrometric detection and quantitation by a stable isotope-labelled internal standard technique. A single laboratory validation was performed, with spike recoveries of 80.1–112.9 % and repeatability relative standard deviations of 1.9–7.2 %. Accuracy as bias was demonstrated against reference values for NIST1849a certified reference material. The method has been validated for the analysis of bovine milk-based, soy-based, caprine milk-based and hydrolysed milk protein-based infant formulae.
Figure
LC-MS/MS MRM chromatogram of mixed nucleoside and nucleotide standard  相似文献   

17.
18.
Apurinic/apyrimidinic (AP) sites are common DNA lesions arising from spontaneous hydrolysis of the N-glycosidic bond and base-excision repair mechanisms of the modified bases. Due to the strong association of AP site formation with physically/chemically induced DNA damage, quantifying AP sites provides important information for risk assessment of exposure to genotoxins and oxidative stress. However, rigorous quantification of AP sites in DNA has been hampered by technical problems relating to the sensitivity and selectivity of existing analytical methods. We have developed a new isotope dilution liquid chromatography–coupled tandem mass spectrometry (LC-MS/MS) method for the rigorous quantification of AP sites in genomic DNA. The method entails enzymatic digestion of AP site-containing DNA by endo- and exonucleases, derivatization with pentafluorophenylhydrazine (PFPH), addition of an isotopically labeled PFPH derivative as internal standard, and quantification by LC-MS/MS. The combination of PFPH derivatization with LC-MS/MS analysis on a triple quadrupole mass spectrometer allows for sensitive and selective quantification of AP sites in DNA at a detection limit of 6.5 fmol, corresponding to 4 AP sites/109 nt in 5 μg of DNA, which is at least ten times more sensitive than existing analytical methods. The protocol was validated by AP site-containing oligonucleotides and applied in quantifying methyl methanesulfonate-induced formation of AP sites in cellular DNA.
Fig
Chemistry of apurinic/apyrimidinic site formation  相似文献   

19.
A rapid multiclass method that covers 50 antimicrobials from 13 different families in animal feeds was developed. Samples were extracted using a mixture of methanol, acetonitrile and a McIlvaine buffer combined with sonication. Feed extracts were simply diluted prior to injection, since the clean-up strategies that were tested, based on either solid-phase extraction or dispersive solid-phase extraction, were ineffective at minimizing matrix-related signal suppression/enhancement. Analysis was carried out by liquid chromatography coupled to tandem mass spectrometry using an electrospray ionization source operating in positive and negative modes. For the quantification, matrix-fortified standard calibration curves were used to compensate for matrix effects and losses in sample preparation. The method was validated in-house in pig, poultry and cattle feed matrices and showed satisfactory performance characteristics. Thus, the proposed approach was suitable for application in a routine high-throughput laboratory for the official control of feeds.
Figure
Multiclass method for antimicrobial analysis in animal feeds.  相似文献   

20.
The rapid development of protein-based pharmaceuticals highlights the need for robust analytical methods to ensure their quality and stability. Among proteins used in pharmaceutical applications, an important and ever increasing role is represented by monoclonal antibodies and large proteins, which are often modified to enhance their activity or stability when used as drugs. The bioactivity and the stability of those proteins are closely related to the maintenance of their complex structure, which however are influenced by many external factors that can cause degradation and/or aggregation. The presence of aggregates in these drugs could reduce their bioactivity and bioavailability, and induce immunogenicity. The choice of the proper analytical method for the analysis of aggregates is fundamental to understand their (size) dimensional range, their amount, and if they are present in the sample as generated by an aggregation or as an artifact due to the method itself. Size exclusion chromatography is one of the most important techniques for the quality control of pharmaceutical proteins; however, its application is limited to relatively low molar mass aggregates. Among the techniques for the size characterization of proteins, field-flow fractionation (FFF) represents a competitive choice because of its soft mechanism due to the absence of a stationary phase and application in a broader size range, from nanometer- to micrometer-sized analytes. In this paper, the microcolumn variant of FFF, the hollow-fiber flow FFF, was online coupled with multi-angle light scattering, and a method for the characterization of aggregates with high reproducibility and low limit of detection was demonstrated employing an avidin derivate as sample model.
Figure
HF5-UV-MALS of therapeutic proteins: aggregation study  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号