首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper the novel features of Yokoyama gaugeon formalism are stressed out for the theory of perturbative quantum gravity in the Einstein curved spacetime. The quantum gauge transformations for the theory of perturbative gravity are demonstrated in the framework of gaugeon formalism. These quantum gauge transformations lead to renormalised gauge parameter. Further, we analyse the BRST symmetric gaugeon formalism which embeds more acceptable Kugo–Ojima subsidiary condition. Further, the BRST symmetry is made finite and field-dependent. Remarkably, the Jacobian of path integral under finite and field-dependent BRST symmetry amounts to the exact gaugeon action in the effective theory of perturbative quantum gravity.  相似文献   

2.
In this paper we will analyse the Aharony-Bergman-Jafferis-Maldacena(ABJM) theory in N = 1 superspace formalism.We then study the quantum gauge transformations for this ABJM theory in gaugeon formalism.We will also analyse the extended BRST symmetry for this ABJM theory in gaugeon formalism and show that these BRST transformations for this theory are nilpotent and this in turn leads to the unitary evolution of the S-matrix.  相似文献   

3.
In perturbative quantum gravity, the sum of the classical Lagrangian density, a gauge fixing term and a ghost term is invariant under two sets of supersymmetric transformations called the BRST and the anti-BRST transformations. In this paper we will analyse the BRST and the anti-BRST symmetries of perturbative quantum gravity in curved spacetime, in linear as well as non-linear gauges. We will show that even though the sum of ghost term and the gauge fixing term can always be expressed as a total BRST or a total anti-BRST variation, we can express it as a combination of both of them only in certain special gauges. We will also analyse the violation of nilpotency of the BRST and the anti-BRST transformations by introduction of a bare mass term, in the massive Curci-Ferrari gauge.  相似文献   

4.
The Einstein–Hilbert action in the context of higher derivative theories is considered for finding their BRST symmetries. Being a constraint system, the model is transformed in the minisuperspace language with the FRLW background and the gauge symmetries are explored. Exploiting the first order formalism developed by Banerjee et al. the diffeomorphism symmetry is extracted. From the general form of the gauge transformations of the field, the analogous BRST transformations are calculated. The effective Lagrangian is constructed by considering two gauge-fixing conditions. Further, the BRST (conserved) charge is computed, which plays an important role in defining the physical states from the total Hilbert space of states. The finite field-dependent BRST formulation is also studied in this context where the Jacobian for the functional measure is illustrated specifically.  相似文献   

5.
In this paper we discuss the absolutely anticommuting nilpotent symmetries for perturbative quantum gravity in general curved spacetime in linear and non-linear gauges. Further, we analyze the finite field-dependent BRST (FFBRST) transformation for perturbative quantum gravity in general curved spacetime. The FFBRST transformation changes the gauge-fixing and ghost parts of the perturbative quantum gravity within functional integration. However, the operation of such symmetry transformation on the generating functional of perturbative quantum gravity does not affect the theory on physical ground. The FFBRST transformation with appropriate choices of finite BRST parameter connects non-linear Curci–Ferrari and Landau gauges of perturbative quantum gravity. The validity of the results is also established at quantum level using Batalin–Vilkovisky (BV) formulation.  相似文献   

6.
Enlarging the gauge group with two extra fermionic coordinates, we provide a unified geometric formulation of the BRST and anti-BRST transformations for gravity in the vierbein formalism and simple supergravity.  相似文献   

7.
We discuss a D-dimensional Abelian 3-form gauge theory within the framework of Bonora-Tonin’s superfield formalism and derive the off-shell nilpotent and absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for this theory. To pay our homage to Victor I. Ogievetsky (1928–1996), who was one of the inventors of Abelian 2-form (antisymmetric tensor) gauge field, we go a step further and discuss the above D-dimensional Abelian 3-form gauge theory within the framework of BRST formalism and establish that the existence of the (anti-)BRST invariant Curci-Ferrari (CF) type of restrictions is the hallmark of any arbitrary p-form gauge theory (discussed within the framework of BRST formalism).  相似文献   

8.
Recently a new type of quadratic gauge was introduced in QCD in which the degrees of freedom are suggestive of a phase of abelian dominance. In its simplest form it is also free of Gribov ambiguity. However this gauge is not suitable for usual perturbation theory. The finite field dependent BRST (FFBRST) transformation is a method established to interrelate generating functionals for different effective versions of gauge fixed field theories. In this paper we propose a FFBRST transformation suitable for transforming the theory in the new quadratic gauge into the standard Lorenz gauge Faddeev–Popov version of the effective lagrangian. The task is made interesting by the fact that the effective lagrangian is invariant under two different BRST transformations which leads to suitable extension of the previous procedures to accomplish the required result. We are thus able to identify a field redefinition to go from a non-perturbative phase of QCD to perturbative QCD.  相似文献   

9.
We derive the off-shell nilpotent (anti-)BRST symmetry transformations for the interacting U(1) gauge theory of quantum electrodynamics (QED) in the framework of the augmented superfield approach to the BRST formalism. In addition to the horizontality condition, we invoke another gauge invariant condition on the six (4,2)-dimensional supermanifold to obtain the exact and unique nilpotent symmetry transformations for all the basic fields present in the (anti-)BRST invariant Lagrangian density of the physical four (3+1)-dimensional QED. The above supermanifold is parametrized by four even space–time variables (with μ=0,1,2,3) and two odd variables (θ and ) of the Grassmann algebra. The new gauge invariant condition on the supermanifold owes its origin to the (super) covariant derivatives and leads to the derivation of unique nilpotent symmetry transformations for the matter fields. The geometrical interpretations for all the above off-shell nilpotent (anti-)BRST transformations are also discussed. PACS 11.15.-q, 12.20.-m, 03.70.+k  相似文献   

10.
We derive absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for the 4D free Abelian 2-form gauge theory by exploiting the superfield approach to BRST formalism. The antisymmetric tensor gauge field of the above theory was christened as the “notoph” (i.e. the opposite of “photon”) gauge field by Ogievetsky and Palubarinov way back in 1966–67. We briefly outline the problems involved in obtaining the absolute anticonimutativity of the (anti-) BRST transformations and their resolution within the framework of geometrical superfield approach to BRST formalism. One of the highlights of our results is the emergence of a Curci-Ferrari type of restriction in the context of 4D Abelian 2-form (notoph) gauge theory which renders the nilpotent (anti-) BRST symmetries of the theory to be absolutely anticommutative in nature.  相似文献   

11.
The paper is devoted to a geometrical interpretation of gauge invariance in terms of the formalism of field theory in compact space–time dimensions (Dolce, 2011) [8]. In this formalism, the kinematic information of an interacting elementary particle is encoded on the relativistic geometrodynamics of the boundary of the theory through local transformations of the underlying space–time coordinates. Therefore gauge interactions are described as invariance of the theory under local deformations of the boundary. The resulting local variations of the field solution are interpreted as internal transformations. The internal symmetries of the gauge theory turn out to be related to corresponding space–time local symmetries. In the approximation of local infinitesimal isometric transformations, Maxwell’s kinematics and gauge invariance are inferred directly from the variational principle. Furthermore we explicitly impose periodic conditions at the boundary of the theory as semi-classical quantization condition in order to investigate the quantum behavior of gauge interaction. In the abelian case the result is a remarkable formal correspondence with scalar QED.  相似文献   

12.
We demonstrate the existence of the nilpotent and absolutely anticommuting Becchi–Rouet–Stora–Tyutin (BRST) and anti-BRST symmetry transformations for the four (3+1)-dimensional (4D) topologically massive Abelian U(1) gauge theory that is described by the coupled Lagrangian densities (which incorporate the celebrated (BF) term). The absolute anticommutativity of the (anti-) BRST symmetry transformations is ensured by the existence of a Curci–Ferrari type restriction that emerges from the superfield formalism as well as from the equations of motion which are derived from the above coupled Lagrangian densities. We show the invariance of the action from the point of view of the symmetry considerations as well as superfield formulation. We discuss, furthermore, the topological term within the framework of superfield formalism and provide the geometrical meaning of its invariance under the (anti-)BRST symmetry transformations.  相似文献   

13.
We provide an alternative to the gauge covariant horizontality condition, which is responsible for the derivation of the nilpotent (anti-) BRST symmetry transformations for the gauge and (anti-) ghost fields of a (3+1)-dimensional (4D) interacting 1-form non-Abelian gauge theory in the framework of the usual superfield approach to the Becchi–Rouet–Stora–Tyutin (BRST) formalism. The above covariant horizontality condition is replaced by a gauge invariant restriction on the (4,2)-dimensional supermanifold, parameterised by a set of four spacetime coordinates, xμ(μ=0,1,2,3), and a pair of Grassmannian variables, θ and θ̄. The latter condition enables us to derive the nilpotent (anti-) BRST symmetry transformations for all the fields of an interacting 1-form 4D non-Abelian gauge theory in which there is an explicit coupling between the gauge field and the Dirac fields. The key differences and the striking similarities between the above two conditions are pointed out clearly. PACS 11.15.-q; 12.20.-m; 03.70.+k  相似文献   

14.
We derive the nilpotent (anti-) BRST symmetry transformations for the Dirac (matter) fields of an interacting four (3+1)-dimensional 1-form non-Abelian gauge theory by applying the theoretical arsenal of augmented superfield formalism where (i) the horizontality condition, and (ii) the equality of a gauge invariant quantity, on the six (4,2)-dimensional supermanifold, are exploited together. The above supermanifold is parameterized by four bosonic spacetime coordinates xμ (with μ=0,1,2,3) and a couple of Grassmannian variables θ and θ̄. The on-shell nilpotent BRST symmetry transformations for all the fields of the theory are derived by considering the chiral superfields on the five (4,1)-dimensional super sub-manifold and the off-shell nilpotent symmetry transformations emerge from the consideration of the general superfields on the full six (4,2)-dimensional supermanifold. Geometrical interpretations for all the above nilpotent symmetry transformations are also discussed within the framework of augmented superfield formalism.  相似文献   

15.
We show that the BRST formalism which is commonly used for infinite-dimensional gauge symmetries is also of interest in the case of continuous finite-dimensional symmetries stemming from global properties. We give as examples the simple case of a massless field on a finite-volume space and the less trivial one of the ghost lagrangian in string theory. In the latter case, we obtain an alternative way to derive the integration measure on moduli space. We also exhibit the BRST type invariance which is hidden in the collective coordinate method.  相似文献   

16.
We discuss various symmetry properties of the Lagrangian density of a four- (3+1)-dimensional (4D) free Abelian 2-form gauge theory within the framework of Becchi–Rouet–Stora–Tyutin (BRST) formalism. The present free Abelian gauge theory is endowed with a Curci–Ferrari type condition, which happens to be a key signature of the 4D non-Abelian 1-form gauge theory. In fact, it is due to the above condition that the nilpotent BRST and anti-BRST symmetries of our present theory are found to be absolutely anticommuting in nature. For the present 2-form theory, we discuss the BRST, anti-BRST, ghost and discrete symmetry properties of the Lagrangian densities and derive the corresponding conserved charges. The algebraic structure, obeyed by the above conserved charges, is deduced and the constraint analysis is performed with the help of physicality criteria, where the conserved and nilpotent (anti-) BRST charges play completely independent roles. These physicality conditions lead to the derivation of the above Curci–Ferrari type restriction, within the framework of the BRST formalism, from the constraint analysis. PACS  11.15.-q; 12.20.-m; 03.70.+k  相似文献   

17.
The derivation of the exact and unique nilpotent Becchi–Rouet–Stora–Tyutin (BRST) and anti-BRST symmetries for the matter fields, present in any arbitrary interacting gauge theory, has been a long-standing problem in the framework of the superfield approach to the BRST formalism. These nilpotent symmetry transformations are deduced for the four (3+1)-dimensional (4D) complex scalar fields, coupled to the U(1) gauge field, in the framework of an augmented superfield formalism. This interacting gauge theory (i.e. QED) is considered on a six (4,2)-dimensional supermanifold parametrized by four even spacetime coordinates and a couple of odd elements of the Grassmann algebra. In addition to the horizontality condition (that is responsible for the derivation of the exact nilpotent symmetries for the gauge field and the (anti-)ghost fields), a new restriction on the supermanifold, owing its origin to the (super) covariant derivatives, has been invoked for the derivation of the exact nilpotent symmetry transformations for the matter fields. The geometrical interpretations for all the above nilpotent symmetries are discussed, too. PACS 11.15.-q, 12.20.-m, 03.70.+k  相似文献   

18.
We classify the physical observables in spontaneously broken non-linearly realized gauge theories in the recently proposed loopwise expansion governed by the Weak Power-Counting (WPC) and the Local Functional Equation. The latter controls the non-trivial quantum deformation of the classical non-linearly realized gauge symmetry, to all orders in the loop expansion. The Batalin–Vilkovisky (BV) formalism is used. We show that the dependence of the vertex functional on the Goldstone fields is obtained via a canonical transformation w.r.t. the BV bracket associated with the BRST symmetry of the model. We also compare the WPC with strict power-counting renormalizability in linearly realized gauge theories. In the case of the electroweak group we find that the tree-level Weinberg relation still holds if power-counting renormalizability is weakened to the WPC condition.  相似文献   

19.
We apply the BV formalism to non-commutative field theories, introduce BRST symmetry, and gauge-fix the models. Interestingly, we find that treating the full gauge symmetry in non-commutative models can lead to reducible gauge algebras. As one example we apply the formalism to the Connes–Lott two-point model. Finally, we offer a derivation of a superversion of the Harish-Chandra–Itzykson–Zuber integral.  相似文献   

20.
We demonstrate a few striking similarities and some glaring differences between (i) the free four- (3+1)-dimensional (4D) Abelian 2-form gauge theory, and (ii) the anomalous two- (1+1)-dimensional (2D) Abelian 1-form gauge theory, within the framework of Becchi–Rouet–Stora–Tyutin (BRST) formalism. We demonstrate that the Lagrangian densities of the above two theories transform in a similar fashion under a set of symmetry transformations even though they are endowed with a drastically different variety of constraint structures. With the help of our understanding of the 4D Abelian 2-form gauge theory, we prove that the gauge-invariant version of the anomalous 2D Abelian 1-form gauge theory is a new field-theoretic model for the Hodge theory where all the de Rham cohomological operators of differential geometry find their physical realizations in the language of proper symmetry transformations. The corresponding conserved charges obey an algebra that is reminiscent of the algebra of the cohomological operators. We briefly comment on the consistency of the 2D anomalous 1-form gauge theory in the language of restrictions on the harmonic state of the (anti-) BRST and (anti-) co-BRST invariant version of the above 2D theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号