首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 495 毫秒
1.
Despite utmost importance in understanding water ionization process, reliable theoretical results of structural changes and molecular dynamics (MD) of water clusters on ionization have hardly been reported yet. Here, we investigate the water cations [(H2O)n = 2–6+] with density functional theory (DFT), Möller–Plesset second‐order perturbation theory (MP2), and coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. The complete basis set limits of interaction energies at the CCSD(T) level are reported, and the geometrical structures, electronic properties, and infrared spectra are investigated. The characteristics of structures and spectra of the water cluster cations reflect the formation of the hydronium cation moiety (H3O+) and the hydroxyl radical. Although most density functionals fail to predict reasonable energetics of the water cations, some functionals are found to be reliable, in reasonable agreement with high‐level ab initio results. To understand the ionization process of water clusters, DFT‐ and MP2‐based Born‐Oppenheimer MD (BOMD) simulations are performed on ionization. On ionization, the water clusters tend to have an Eigen‐like form with the hydronium cation instead of a Zundel‐like form, based on reliable BOMD simulations. For the vertically ionized water hexamer, the relatively stable (H2O)5+ (5sL4A) cluster tends to form with a detached water molecule (H2O). © 2013 Wiley Periodicals, Inc.  相似文献   

2.
A series of molecular rhenium sulfide clusters [Re6S8(OH)6?n (H2O) n ](4?n)? (n = 0, 2, 4, 6) catalyze dehydrogenation of alcohols, and hydrogenation of ketones and olefins in a hydrogen stream at 350 °C. The catalytic activities of the dianionic and neutral clusters (n = 2, 4) are lower than those of tetraanionic and dicationic clusters (n = 0, 6) for all the reactions. When 1,4-butanediol is allowed to react over K4[Re6S8(OH)6], dehydrogenation proceeds to yield 2-hydroxytetrahydrofuran and successively γ-butyrolactone above 300 °C. Over [Re6S8(H2O)6]SO4 dehydration proceeds to yield tetrahydrofuran above 250 °C. The thermal activation mechanisms of these clusters were studied by powder X-ray diffraction analyses, Raman spectrometry, extended X-ray absorption fine structure spectrometry, thermogravimetry, and differential thermal analyses. The catalytically active site of K4[Re6S8(OH)6] is an uncoordinated metal site (Lewis acid site) developed by the loss of a water molecule from two hydroxo ligands. The active site of [Re6S8(H2O)6]SO4 is a Brønsted acid site; the anhydrous aqua cluster dication disproportionates to a hydroxo cluster monocation and a proton. Both of the octahedral cluster frameworks are retained up to 500 °C.  相似文献   

3.
Complexes of Co2+, Ni2+, and Cu2+ with N-(phosphonomethyl)aminosuccinic acid (H4PMAS) of general formula Na2MPMAS·nH2O [M=Co(II), Ni(II), Cu(II), n—number of water molecules] were synthesized. Based on interpretation of diffusion reflectance spectroscopy, structure of all complexes is based on distorted octahedral. Analysis of IR spectra of Co(II), Ni(II), and Cu(II) N-(phosphonomethyl)aminosuccinates demonstrated that metal ions are coordinated to the ligand through nitrogen atom of the imino group, oxygen atoms of the α- and β-carboxyl groups as well as oxygen atom of the phosphonic group of the H4PMAS. We demonstrated that thermal stability of complexes increases in sequence Cu(II) < Ni(II) < Co(II), obviously as a result of change over from the dimeric to polymeric character of the initial complex. Complete decomposition of ligand occurs at these temperatures and is accompanied by release of H2O, CO2, and NO2. The final products of thermal decomposition of the complexes are mixtures of oxides and phosphates of respective metals.  相似文献   

4.
Cluster size distribution and collision-induced dissociation (CID) studies of protonated methanol and protonated methanol—water clusters yield information on the structure and energetics of such ions. Ions were formed at atmospheric pressure in a corona discharge source, and were subjected to CID in the center quadrupole of a triple quadrupole mass spectrometer. Cluster ions containing up to 13 molecules of methanol and/or water were observed and examined using CID experiments. The CID of all (CH3OH)n · H2O · H+ clusters, where n ? 8, showed that water loss was statistically favored over methanol loss and that the preferred dissociation channel involved loss of water with methanol molecules. These results support a model employing a chain of hydrogen-bonded solvent molecules rather than one in which fused rings of ligands surround a central hydronium ion. However, CID of larger clusters, where n ? 9, showed that loss of one methanol was equal to or less than loss of water, reflecting a change in structure.  相似文献   

5.
Using a CO2 laser we have desorbed LiOH and NaOH from a solid target into an expanding inert gas jet pulse. Subsequently the beam was ionized by photons from a UV laser. Surprisingly, we observed in mass spectra metal water clusters and metal-hydride water clusters. For the metals M=Li, Na we find that the [M(H2O)n]+ peaks are dominant for small clusters, while for large clusters (n>20) the [MH(H2O)n]+ peaks are dominant. This indicates that the clathrate (H2O)20 may play an important role in the formation of metallo-water clusters.  相似文献   

6.
The reduction of the octahedral cobalt(III) complex CoIII(HL)·9H2O, H4L = 1,8-bis(2-hydroxybenzamido)-3,6-diazaoctane by glutathione (GSH) has been studied by conventional spectrophotometry at 25.0 ≤ t/°C ≤ 45.0, 0.02 ≤ [H+]/mol dm?3 ≤ 0.20 and I = 0.3 mol dm?3 (NaClO4). The reaction is biphasic. The fast initial phase is attributed to the H+-induced formation of the mixed ligand complex, [CoIII(H2L)GSH]+, for which the rate-limiting step is the chelate ring opening via CoIII–NH (amide–N) bond cleavage of the protonated species, [CoIII(H2L)]+. Outer-sphere association equilibria between GSH/GSH2 + and [CoIII(H2L)]+ substantially retard the ring opening process and consequently the mixed ligand complex formation. This is then followed by a slow phase involving reduction of [CoIII(H2L)GSH]+ by both GSH and GSH2 +. The final products are the corresponding Co(II) complex and the oxidized form of GSH, GS–SG. The kinetic data and activation parameters for the redox process are interpreted in terms of an outer-sphere electron transfer mechanism.  相似文献   

7.
In contrast to an earlier report,1 the collisonally induced dissociation of protonated 2-propanol and t-butyl alcohol yields spectra that are indistinguishable from those of the corresponding [C3H7/H2O]+ and [C4H9/H2O]+ ions generated by the (formal) gas phase addition reactions in a high pressure ion source of [s-C3H7]+ and [t-C4H9]+ ions with the n-donor H2O. Similarly, [s-C3H7/CH3OH]+ ions generated by both gas phase protonation of n- and s-propyl methyl ethers and addition reactions of [C3H7]+ to CH3OH display mode-of-generation-independent collisionally induced dissociation characteristics. However, analysis of the unimolecular dissociation (loss of propene) of the [C3H7/CH3OH]+ system, including a number of its deuterium, 13C- and 18O-labelled isotopomers, supports the idea that prior to unimolecular dissociation, covalently bound [C3H7- O(H)CH3]+ ions intercovert with hydrogen-bridged adduct ions, analogous to the behaviour of the distonic ethene-, propene- and ketene-H2O radical cations.  相似文献   

8.
In the crystal structure of [(n-C4H9)4N]+·[NH2(C2N2S)NHCOO?]·NH2CSNC(NH2)2 (1), guanylthiourea molecules and 1,3,5-thiadiazole-5-amido-2-carbamate ions are joined together by intermolecular N–H…O, N–H…N, and weak N–H…S hydrogen bonds to generate stacked host layers corresponding to the (110) family of planes, between which the tetra-n-butylammonium guest cations are orderly arranged in a sandwich-like manner. In the crystal structure of [(n-C3H7)4N]+·[NH2(C2N2S)NHCOO?]·NH2CSNC(NH2)2·H2O (2), the tetrapropyl ammonium cations are stacked within channels each composed of hydrogen bonded ribbons of guanylthiourea molecules, 1,3,5-thiadiazole-5-amido-2-carbamate ions and water molecules.  相似文献   

9.
The IR and Raman spectra ofM(BF4)2·6H2O forM=Mg2+, Zn2+ and Cd2+ in the range 4000–140 cm?1 were recorded, as were theirDTA andTG curves up to 500°C. The data obtained confirm the presence of the water complex [M(H2O)6]2+ and of the complex anion BF4 ? in these compounds. It was also established that the six water molecules in Mg(BF4)2·6H2O and in Zn(BF4)2·6H2O are not crystallographically equivalent, and that hydrogen bonds of the type H2O...H2O...F4B and H2O...H2O...H2O participate in the structure. The energy of the hydrogen bonds H2O...F4B for the three crystal hydrates was also calculated. The thermal and thermogravimetric data are in agreement with and confirm the spectroscopic data.  相似文献   

10.
Five metal imidazole dicarboxylate-based compounds, {[Zn3(MIDC)2(4,4′-bipy)3](4,4′-bipy)·8H2O}n (1), {[Co3(MIDC)2(4,4′-bipy)3](4,4′-bipy)·6H2O}n (2), {[Co3(MIDC)2(py)2(H2O)2]}n (3), {[Mn6(MIDC)4(py)5(H2O)4]}n (4), and {[Mn3(MIDC)2(Phen)3(H2O)2]}n (5) (H3MIDC = 2-methyl-1H-imidazole-4,5-dicarboxylic acid; 4,4′-bipy = 4,4′-bipyridine; py = pyridine; Phen = 1,10-phenanthroline), have been synthesized under hydrothermal conditions and characterized by elemental analyses, IR spectroscopy, thermogravimetric analysis, and single-crystal X-ray diffraction. We control the coordination modes of H3MIDC via hydrazine and obtained a series of coordination compounds containing honeycomb-like [M3(MIDC)2]n layers. We also investigated the effects of different neutral terminal or bridging ligands on [M3(MIDC)2]n layers. Coplanar [M3(MIDC)2]n layers and 4,4-bipy were used to construct 3-D frameworks of 1 and 2. Puckered [M3(MIDC)2]n layers were found in 3–5; 4 is the first [M3(L)2]n layer structure with two crests and troughs during each period (L = imidazole-4,5-dicarboxylic acid or its analog). Compound 5 is the first puckered [M3(L)2]n layer structure decorated by chelating neutral ligands. Compound 1 exhibits weak blue photoluminescence in the solid state at room temperature. Variable-temperature magnetic susceptibility measurements of 2–5 indicate strong antiferromagnetic interactions.  相似文献   

11.
Interactions of group 12 metal(II) species (Hg2+, Cd2+, Zn2+, Hg(H2O) n 2+ , Cd(H2O) n 2+ , and Zn(H2O) n 2+ (n?=?1, 2) with neutral (RSH), deprotonated (RS?), and doubly deprotonated cysteine species (abbreviated as ??H2cys??, ??Hcys???, and ??cys2???, respectively) are examined with the Becke three-parameter Lee?CYang?CParr (B3LYP) hybrid functional after preliminary screening in a conformation analysis with the Parameterized Model number 3 (PM3) semiempirical method. Effects of water on aqueous solution are evaluated by microsolvation and polarized continuum model (PCM) approaches. In the most stable conformations of M(H2cys)2+ and M(Hcys)+ complexes (M?=?Hg2+, Cd2+, and Zn2+), the SH group of the cysteine moiety is already deprotonated and undergoes strong binding with the metal ion. Among Hg(H2cys)2+ complexes, cysteine complexes of Hg2+ without deprotonation of the SH group and mercury(II) carboxylato-type structures are at least 83 and 117?kJ/mol less stable in energy than the most stable complex (B3LYP/6-311++G(d,p)-SDD+d+f//B3LYP/6-31G(d)-SDD+d). Although Zn2+ binds more strongly than Hg2+ to a H2cys molecule at the high-level CCSD(T)/6-311++G(d,p)-SDD+d+f//B3LYP/6-311++G(d,p)-SDD+d+f level, [Hg(H2O)2]2+ is stronger than [Zn(H2O)2]2+ because the deformation of [Zn(H2O)2]2+ required to bind to cys is much more than in [Hg(H2O)2]2+. Complexes with a deprotonated cysteine, M(Hcys)+ and M(cys), prefer a multidentate structure.  相似文献   

12.
The interaction between bovine serum albumin (BSA) and FeIII complexes with three binary organic acid (biorga) ligands, [FeIII(oxa)(H2O)4]+ (oxa = oxalic acid), [FeIII(pra)(H2O)4]+ (pra = propanedioic acid) and [FeIII(sua)(H2O)4]+ (sua = succinic acid), as well as the sonocatalytic damage of BSA in the presence of these three FeIII–biorga complexes under ultrasonic irradiation, were studied by UV–vis and fluorescence spectra. The experimental results show that the fluorescence quenching process of BSA caused by three FeIII–biorga complexes are all static quenching and the corresponding quenching rate constants (K q), equilibrium constants (K A) and the binding site numbers (n) were calculated. The results reveal that, under ultrasonic irradiation, the BSA molecules were obviously damaged by these FeIII–biorga complexes. In addition, the effects of several factors on the damage of BSA molecules were examined. The experimental results demonstrate that the damage degree of BSA increased with an increase of ultrasonic irradiation time, FeIII–biorga complex concentration, and ionic strength. In comparison, [FeIII(pra)(H2O)4]+ exhibited higher sonocatalytic activity than [FeIII(oxa)(H2O)4]+ and [FeIII(sua)(H2O)4]+. Finally, the extent of generation of $ \cdot {\text{O}}_{2}^{ - } $ · O 2 ? and ·OH during sonocatalytic processes was estimated. Perhaps, the results will be significant for promoting sonodynamic treatment (SDT) of tumors at the molecular level.  相似文献   

13.
Extensive computations were performed on aqueous clusters of monovalent sodium cation [Na+(H2O) n ; (n = 1–20)] using MP2/cc-pVTZ and density functional theory. The structure, energy, and coordination number (CN) preference of a large number of competing conformations of different complexes have been explored. For complexes up to n = 12, the CN 4 is most preferred while 5, 6 CNs are favored in case of larger complexes containing up to 20 water molecules. These results are in very good agreement with experimental observations. The strength of hydrogen bonding among the waters coordinated to the Na+ ion is found to play a major role in the stability of the complexes. The varying preferences for CN of Na+ ion were explored by screening two important databases: Protein Databank and Cambridge Structural Database. A linear correlation is observed between the M (Metal)–O distance and the charge on metal ion in complex with the increase in CN of metal ion.  相似文献   

14.
The slow unimolecular dissociations of six members of the [CnH2n-3]+ (n = 3-8) series of unsaturated carbonium ions are explained in terms of a potential surface approach together with some concepts of mechanistic organic chemistry. The occurrence of some dissociations is shown to be precluded because either the reacting configurations or product combinations are inaccessible at energies appropriate to metastable transitions. The approach permits correct predictions to be made concerning the shapes of metastable peaks for dissociations which occur without σ-bond formation in the final step. In particular, the observation of a composite peak, thus indicating two channels for reaction, for C2H4 loss from [C7H11]+ is naturally accommodated.  相似文献   

15.
The gadolinium (Gd) member of a new type of heteropolytungstates that contain one lanthanide and two transition metal ions in a triangular arrangement is reported. The compound NaK6Gd0.33 [((VO)2Gd(H2O)4K2(H2O)2(Na)(H2O)2)(α-B-AsW9O33)2]·24H2O (1) was prepared from acidified aqueous solutions of Na2WO4·2H2O, As2O3 and VOSO4·5H2O to which Gd3+ ions were added. The single crystal X-ray structure analysis (monoclinic, space group P21/m) shows that the anion consists of two [α-B-AsIIIW9O33]9? trilacunary Keggin-type units linked by two VO2+, one Gd3+ as well as weakly by two K+ and one Na+ ions, resulting in a sandwich-type structure with idealized C 2v symmetry. The problem of positioning crystal lattice and special polyoxometalate sites with different cations is discussed also in connection with supramolecular chemistry aspects and as an option for further research. A fit of the magnetic susceptibility yielded exchange coupling constants of J VV = ?2.55 cm?1 (anti-ferromagnetic) between the vanadium ions and J GdV = 0.6 cm?1 (ferromagnetic) between the Gd and each of the two vanadium ions. The complete magnetochemical analysis also revealed a partial occupancy of the Na+ sites in the counter-cation–water system by Gd3+ ions (0.33 Gd3+ ions in total).  相似文献   

16.
Production of doubly charged ions of alkaline earth metals Ba2+ and Ca2+ and their doubly charged clusters with water molecules (H2O)n · Ba2+, (H2O)n · Ca2+ (n = 1, 2, 3) by means of low temperature fast atom bombardment technique is observed in the case of crystalline hydrates of BaCl2 and CaCl2 salts, formed during freezing of water-salt solutions. Reasons for a possibility of production of the doubly charged species in the case of the two indicated salts and their absence in the case of chlorides of some other divalent metals (Mg, Mn, Co, Cu, Zn) are discussed. As to singly charged secondary ions Me+, MeCl+, MeOH+, [(H2O)n · MeCl]+, [(H2O)n · MeOH]+ (where Me is metal), high efficiency of their production from crystalline hydrates was observed and possible explanation of the phenomenon is suggested.  相似文献   

17.
Structures and energetic characteristics of Li(H2O) n and Li+(H2O) n clusters with n = 1–6, 19, and 27 determined in the second order of the Møller-Plesset perturbation theory with 6–31++G(d,p) basis set are analyzed. The electron density redistribution, which takes place upon the electron addition to a Li+(H2O) n cluster, is found to be provided by hydrogen-bonded water molecules: initially almost neutral molecules, which are most distant from lithium, become negatively charged. The calculated energies of the electron capture by Li+(H2O) n clusters are approximated with the appropriate electrostatic model, and estimates of the lithium ionization energy in water clusters of various sizes are found. Similar estimates obtained earlier for sodium are made more accurate.  相似文献   

18.
The hydrothermal synthesis and structure for a new iron phosphate based open-framework solid, (NH4)[Fe2(OH)(H2O)(PO4)2]·1.5H2O, is presented. The three-dimensional (3-D) framework is built from butterfly-shaped tetranuclear iron-oxygen clusters, which are coordinated by eight PO4 tetrahedra to create 8-membered windows along the a-, b- and c-axes; the lattice water molecules as well as the counter NH4+ cations reside in the cross channels. The new open-framework solid is a pseudo-polymorph with the known structure of the mineral sphenicidite, and exhibits spontaneous magnetization in the low temperature regime with TN ≈ 25 K, which is a result of canted spin antiferromagnetism.  相似文献   

19.
Hydrate clusters of 2-hydroxybenzenesulfonic and 1,3-benzenedisulfonic acids were calculated in terms of the density functional theory (DFT) by the B3LYP/6-31G** method. The process of water adsorption on the crystal surface of 4-hydroxy-1,3-benzenedisulfonic acid dihydrate was simulated using the generalized gradient approximation (DFT/PBE) and periodic boundary conditions. For the model system (OHC6H4SO3 ?)·H5O2 +, the activation barriers for the proton transfer were calculated depending on the distance between the O atoms and the deviation of the proton from the O...O bond line. The presence of one H2O molecule per SO3H group is energetically most favorable for the formation of clusters of 1,3-benzenedisulfonic acid containing a stoichiometric amount of water. The simulation of the hydration of 4-hydroxy-1,3-benzenedisulfonic acid dihydrate (OHC6H3(SO3H)2·2 H2O + n H2O, n = 1–3) showed that the superstoichiometric H2O molecule is adsorbed on the crystal surface of this dihydrate with energy release of 0.75–0.95 eV. The position of this water molecule is less favorable in the bulk than on the surface.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号