首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Molecular mechanics and molecular dynamics calculations have been performed on organo-mineral composites that model the sorption of high-molecular-weight humic polymers on mineral surfaces and the sorption of low-molecular-weight organic contaminants on both mineral and organic surfaces in soil. Muscovite mica was chosen as a mineral model; an oxidized topological lignin-carbohydrate complex was chosen as a humic model; benzene, sodium benzoate, atrazine, and DDT represent different classes of contaminants. Sorption energies were estimated based on molecular mechanics calculations. Flexible linear polymers undergo drastic conformational changes when approaching the mineral surface, to ensure a gain in the interaction energy that outweighs a loss in the conformational energy proper. Therefore, the gas-phase conformation composi tion of environmental organic polymers is not directly related to their spatial organization in soil composites. Molecular dynamics simulation suggests high stability of the organic polymer coatings of mineral surfaces in the environment. Low-molecular-weight organic molecules demonstrate much less affinity for the mineral surface, which implies unhindered exchanges between the surface and its near environment. Ionizable compounds, e.g. salts of organic acids, are different, because they can form strong associations with a mineral surface through cation bridges. Sorption energies are compound-specific and depend on the sorbate-sorbent orientation. The calculations suggest some preference for the edges of a model muscovite sheet in comparison with the basal oxygen surface as a sorption site. Coating of mineral surfaces with organic polymers does not hinder the sorption of organic molecules except in the special case of organic ions.  相似文献   

2.
Molecular mechanics calculations and simulated annealing were applied to model humic polyanions originating from lignin. The dynamic behavior of such oxidized lignins in model soil organic complexes, such as an oxidized lignin-carbohydrate complex (LCC) and humic (oxidized LCC)-clay aggregates, was analyzed. Neither ionization nor hydrogen bonding bring significant changes in the conformational properties of oxidized lignin and LCC. Oxidized lignin and LCC oligomers (humic substances in soil) bind to the mineral surfaces, a process that was exemplified in computational experiments on complexes with muscovite. Upon ionization, a lignin-derived oligomer develops strong attractive organo-mineral interactions through cation bridges. Without metal cations, electrostatic repulsion between negatively charged anions and the oxygen-mineral surface prevails, and the two parts of the organo-mineral complex drift apart. This tendency is typical of an oxidized lignin oligomer but not of a topological oxidized LCC.  相似文献   

3.
Adsorption of tetracycline, one of the most widely used antibiotics, onto goethite was studied as a function of pH, metal cations, and humic acid (HA) over a pH range 3-10. Five background electrolyte cations (Li(+), Na(+), K(+), Ca(2+), and Mg(2+)) with a concentration of 0.01 M showed little effect on the tetracycline adsorption at the studied pH range. While the divalent heavy metal cation, Cu(2+), could significantly enhance the adsorption and higher concentration of Cu(2+), stronger adsorption was found. The results indicated that different adsorption mechanisms might be involved for the two types of cations. Background electrolyte cations hardly interfere with the interaction between tetracycline and goethite surfaces because they only form weak outer-sphere surface complexes. On the contrary, Cu(2+) could enhance the adsorption via acting as a bridge ion to form goethite-Cu(2+)-tetracycline surface complex because Cu(2+) could form strong and specific inner-sphere surface complexes. HA showed different effect on the tetracycline sorption under different pH condition. The presence of HA increased tetracycline sorption dramatically under acidic condition. Results indicated that heavy metal cations and soil organic matters have great effects on the tetracycline mobility in the soil environment and eventually affect its exposure concentration and toxicity to organisms.  相似文献   

4.
Brown humic acids (BHAs) constitute the most polar and soluble fraction of humic acids. Their colloidal character and their high number of functional surface groups justify their higher reactivity as against metallic cations with respect to other humic fractions (i.e., gray humic acids and humins). The aim of this work is to study the retention mechanisms of Cu(II), Ni(II), and Co(II) on a BHA by means of a proper combination of physical and chemical techniques: sorption isotherms, mathematical modeling of these isotherms, molecular modeling, FTIR, and N2 (77 K) and CO2 (273 K) adsorption. Electrostatic retention for the three cations is an important mechanism at very low concentrations. Its magnitude is higher than that of the specific retention in the initial stages of the retention but it decreases progressively with respect to the former as the initial metal concentration increases. The BHA surface area varies with the amount of retained metal. When the initial amount of added metal is low (n0 < 80 mmol kg(-1)), the cations form 2:1 complexes, which are energetically favored due to the chelate effect. To obtain this coordination, the BHA slightly modifies its conformation by decreasing its area. When the initial amount of added metal is sufficiently high to occupy most of the surface functional groups (n0 > 1280 mmol kg(-1)), the cations are heterogeneously retained over the whole surface, thus preventing the available groups at low n0 from giving place to the 2:1 complexes due to the fact that they are already occupied.  相似文献   

5.
The aim of this study is to explain how clay minerals adsorb heavy metals individually and in the presence of humic acid, and to model heavy metal adsorption specifically based on surface-metal binary and surface-metal-ligand ternary complexation. The adsorption of Cu(II) and Pb(II) on kaolinite-based clay minerals has been modeled by the aid of the FITEQL3.2 computer program using single- and double-site binding models of the Langmuir approach. Potentiometric titrations and adsorption capacity experiments were carried out in solutions containing different concentrations of the inert electrolyte NaClO4; however, the modeling of binary and ternary surface complexation was deliberately done at high ionic strength (0.1 M electrolyte) for eliminating adsorption onto the permanent negatively charged sites of kaolinite. A "two-site, two pKa" model was adapted, and as for the two surface sites responsible for adsorption, it may be arbitrarily assigned that [triple bond]S1OH sites represent silanol and organic functional groups such as carboxyl having pKa values close to that of silanol, and [triple bond]S2OH sites represent aluminol and organic functional groups such as phenolics whose pKa values are close to that of aluminol, as all the studied clays contained organic carbon. Copper(II) showed a higher adsorption capacity and higher binding constants, while lead(II), being a softer cation (in respect to HSAB theory) preferred the softer basic sites with aluminol-phenol functional groups. Heavy metal cations are assumed to bind to the clay surface as the sole (unhydrolyzed) M(II) ion and form monodentate surface complexes. Cu(II) and Pb(II) adsorption in the presence of humic acid was modeled using a double-site binding model by the aid of FITEQL3.2, and then the whole system including binary surface-metal and surface-ligand and ternary surface-metal-ligand complexes was resolved with respect to species distributions and relevant stability constants. Electrostatic effects were accounted for using a diffuse layer model (DLM) requiring minimum number of adjustable parameters. Metal adsorption onto clay at low pH increased in the presence of humic acid, and the metal adsorption vs pH curves of metal-kaolinite-humic acid suspensions were much steeper (and distinctly S shaped) compared to the wider pH-gradient curves observed in binary clay-metal systems. The clay mineral in the presence of humic acid probably behaved more like a chelating ion-exchanger sorbent for heavy metals rather than being a simple inorganic ion exchanger.  相似文献   

6.
Organoclays are usually used as sorbents to reduce the spread of organic compounds and to remove them at contaminated sites. The sorption equilibrium and the mechanisms of volatile organic compounds (VOCs) on organoclays under different humidities are helpful for developing efficient organoclays and for predicting the fate of VOCs in the environment. In this study, the organoclay was synthesized through exchanging inorganic cations by hexadecyltrimethyl ammonium (HDTMA) into montmorillonite, resulting in 12?% of organic content. The surface area of organoclay was smaller than the unmodified clay due to the incorporation of organic cations into the interlayer. Both adsorption on organoclay surface and partition into the incorporated HDTMA in organoclay played roles on the sorption process. Compared the sorption coefficients in montmorillonite and different modified clays, the incorporated organic cations overcame the inhibition effect of hydrophilic surface of clay on the sorption process of hydrophobic organic compounds from water. The sorption coefficients of VOC vapors on organoclay were further characterized using a linear solvation energy relationship (LSER). The fitted LSER equations were obtained by a multiple regression of the sorption coefficients of 22 probe chemicals against their solvation parameters. The coefficients of the five-parameter LSER equations showed that high HDTMA-content montmorillonite interacts with VOC molecules mainly through dispersion, partly through dipolarity/polarizability and hydrogen-bonds as well as with negative π-/n-electron pair interaction. The interaction analysis by LSERs suggests that the potential predominant factors governing the sorption of VOCs are dispersion interactions under all tested humidity conditions, similar with the lower level modified clay. The derived LSER equations successfully fit the sorption coefficients of VOCs on organoclay under different humidity conditions. It is helpful to design better toxic vapor removal strategy and evaluate the fate of organic contaminants in the environment.  相似文献   

7.
Abstract

The sorption of tefluthrin was studied on “pure” clay minerals and those that had been coated with aquatic humic substances over a mass percent carbon range of 0.02 to 2.15. Tefluthrin sorption onto humic-coated minerals was significantly greater than on to the clean minerals and increased with increasing quantities of sorbed humic substances. Humic acid, the most aromatic coating, was the strongest sorbent, followed by fulvic acid, hydrophilic macromolecular acid and natural coatings on estuarine suspended particles. This shows the significant impact of humic coatings on the sorptive capacity of mineral particles. The sorption was linear, also consistent with the operation of a partition process. The partition coefficient normalised to organic carbon (Koc) after deduction of the contribution from the clean mineral, ranged from 120000 to 770000 and was highest for the most aromatic humic acid fraction.  相似文献   

8.
The association of linear or macrocyclic polyethers with the electronic properties of the π-conjugated polythiophene backbone leads to functional conducting polymers that exhibit metal cation dependent electronic properties. Based on this concept, various classes of cation sensors have been proposed and investigated for almost two decades. The interactions of metal cations with linear or macrocyclic polyether functional groups lead to modifications of the electronic properties of the π-conjugated backbone through various mechanisms including direct electronic effects on a single conjugated chain, collective electrochemical processes, or conformational changes. Conjugated polymers and oligomers representative of these various processes are discussed with an emphasis on recent examples of derivatized conjugated systems in which the interactions between metal cations and polyether groups serve as driving force to create molecular motion in conjugated systems.  相似文献   

9.
The subsurface sorption of Suwannee River fulvic acid (SRFA) and humic acid (SRHA) onto a synthetic aquifer material (iron-oxide-coated quartz) and two natural aquifer materials (Ringold sediment and Bemidji soils) was studied in both batch and column experiments. The hypothesis that hydrophobic effects followed by ligand exchange are the dominant mechanism contributing to the chemical sorption happening between dissolved natural organic matter (NOM) and the mineral surfaces is supported by observations of several phenomena: nonlinear isotherms, faster sorption rates versus slower desorption rates, phosphate competition, a solution pH increase during NOM sorption, and functional groups and aromaticity-related sorption. In addition, high-pressure size exclusion chromatography (HPSEC) and carboxylic acidity showed that lower molecular weight NOM components of SRHA are preferentially sorbed to iron oxide, a result in contrast to that for SRFA. Phosphate increased the desorption of sorbed NOM as well as soil organic matter. All of these trends support ligand exchange as the dominant reaction between NOM and the iron oxide surfaces; however, if the soil surface has been occupied by soil organic matter, then the sorption of NOM is more due to hydrophobic effect.  相似文献   

10.
Both benzylic cations and anions are strongly stabilized by chromium tricarbonyl complexation, while benzylic radicals are largely unaffected. Density functional theory calculations were performed on primary, secondary, and tertiary benzylic species to explore the effect of substitution on the stabilizing ability of the chromium tricarbonyl moiety. Complexed 1-indanyl species were also examined to elucidate the effect of conformational restraint. It was found that the strong stabilization of benzylic anions and the slight destabilization of benzylic radicals by chromium tricarbonyl are insensitive to skeletal changes. Chromium-complexed benzylic cations, however, are highly sensitive to changes in the organic framework, with increased substitution or constriction of conformational mobility eroding the effect of the metal. 2-Indanyl species were also examined to study the effect of the chromium tricarbonyl fragment on homobenzylic species. It was found that the metal fragment stabilizes distant anions by field and inductive effects and cations by a direct interaction of the metal with the cationic carbon. Homobenzylic radicals, however, do not interact with the chromium tricarbonyl moiety and suffer a slight inductive destabilization.  相似文献   

11.
Summary In a previous paper we studied the interaction of the radionuclides 110mAg, 60Co and 65Zn with peat humin. These nuclides are among the fission or corrosion products in nuclear reactors. The aim of this paper is to study the effect of certain ligands, which are present in the environment, such as humic acid, fulvic acid, EDTA and urea, on the sorption of these radionuclides by humin. The obtained results indicated that urea has no effect on the sorption of Co and Zn by humin, and only a little in case of Ag. However, the presence of the other ligands (humic acid, fulvic acid or EDTA) leads to different decreases in the sorption of the three nuclides by humin. The results are interpreted in the light of the complex formation between ligands and the metal cations and of the strength of binding of these cations to the humin sorbent. The release of Ag+in the presence of different ligands was found to follow the order: humic acid>EDTA>fulvic acid>urea. In the case of both Co2+and Zn2+, the sequence is changed to be: EDTA>humic acid>fulvic acid>urea, with a higher release in the case of Zn2+. The results showed that cobalt is bound more strongly to humin than silver and zinc. The sulphur content of the humic fractions plays a significant role in the competition for silver and zinc.  相似文献   

12.
In controlled metal sorption experiments, the equilibrium distribution coefficient is a key variable quantifying sorbate partitioning across the solid-solution interface. Separation of metals into 'dissolved' and 'particulate' fractions is commonly achieved with syringe filtration, where the boundary is somewhat arbitrarily dictated by the limited selection of available pore sizes. Investigations involving natural organic matter, such as bacterial cells or plant tissues, are especially prone to experimental artifacts if the substrate releases abundant colloidal compounds that contribute to sorption by binding free metal cations in a pH-dependent fashion yet pass through conventional filters, causing the truly dissolved fraction to be grossly overestimated. We observed this phenomenon during a study of lanthanide sorption on a marine macroalga, Ulva lactuca, as a function of pH. At low ionic strength, distribution coefficients calculated for a 0.22-μm size cutoff falsely imply that metal sorption reverses to gradual release above pH 4.6, instead of continuing to increase. Centrifuging the filtrates in Amicon? Ultra units (30 and 3 kDa molecular weight cutoff) revealed a mounting proportion of colloid-bound metal, constituting up to 95% of the 'dissolved' (<0.22 μm) fraction near pH 8. Measurements of DOC concentrations suggest this being due to pH-dependent binding of free metal cations to a fixed pool of organic colloids. The process is well described with a simple 2-site Langmuir isotherm in 0.05, 0.5, and 5.0M NaCl. Using this model to correct the original distribution coefficients not only removed the spurious reversal at low ionic strength, but also uncovered a prominent suppressive effect on the intermediate and high ionic strength data that had initially gone undetected. Ultra-filtration may thus be an essential analytical tool for proper characterization and interpretation of metal sorption on organic matter over a wide range of experimental conditions. Some implications are discussed for the use of biosorbents in the remediation of metal-contaminated waste waters.  相似文献   

13.
Enrofloxacin (ENR) occurs widely in natural waters because of its extensive use as a veterinary chemotherapeutic agent. To improve our understanding of the interaction of this emerging contaminant with soils and sediments, sorption of ENR on homoionic smectites and kaolinite was studied as a function of pH, ionic strength, exchangeable cations, and humic acid concentration. Batch experiments and in situ ATR-FTIR analysis suggested multiple sorption mechanisms. Cation exchange was a major contributor to the sorption of cationic ENR species on smectite. The decreased ENR sorption with increasing ionic strength indicated the formation of outer-sphere complexes. Exchangeable cations significantly influenced the sorption capacity, and the observed order was Cs相似文献   

14.
A method is described which allows molecular modeling to be combined with a group additive property model to estimate glass transition temperatures of linear polymers. Tg is assumed to be a function of conformational entropy and mass moments of the polymer. These two molecular properties are estimated in terms of the torsion angle units composing the polymer using conformational energy calculations. A “universal” Tg equation is derived using 30 structurally diverse polymers and multidimensional linear regression analysis. “Designer” Tg equations are also derived specifically for acrylate and methacrylate polymers. The work described here demonstrates how molecular modeling can be combined with group additivity theory to yield open-ended models that are not restricted by lack of requisite group additive parameters and take advantage of three-dimensional molecular information.  相似文献   

15.
The hydration of some of the alkaline earth divalent metal cations and first row transition metal cations is considered within the quasi-chemical theory of solutions. Quantum chemical calculations provide information on the chemically important interactions between the ion and its first-shell water molecules. A dielectric continuum model supplies the outer-shell contribution. The theory then provides the framework to mesh these quantities together. The agreement between the calculated and experimental quantities is good. For the transition metal cations, it is seen that the ligand field contributions play an important role in the physics of hydration. Removing these bonding contributions from the computed hydration free energy results in a linear decrease in the hydration free energy along the period. It is precisely such effects that molecular mechanics force fields have not captured. The implications and extensions of this study to metal atoms in proteins are suggested.  相似文献   

16.
胡敏酸的结构特征及其吸附行为   总被引:5,自引:0,他引:5  
梁重山  党志  刘丛强 《分析化学》2006,34(3):288-292
使用0.5mol/L NaOH和0.1mol/L Na_4P_2O_7溶液分别从土壤中提取胡敏酸,并且对其进行了元素分析、红外光谱、固态13C核磁共振的定性、定量研究。结果表明,两种胡敏酸的性质很相似,但也存在一些微小差异,Na_4P_2O_7提取的胡敏酸比NaOH提取的具有芳香度较大、聚合度较高、极性官能团含量较多的特点。测定了菲在6个胡敏酸上的吸附等温线,Freundlich模型很好的拟合了所有吸附等温线,相关系数r均在0.992以上。有机碳分配系数K_(oc)与胡敏酸中极性碳(POC)之间存在明显的线性相关关系,并受到提取剂类型的影响。  相似文献   

17.
The fate and transport of toxic metal ions and radionuclides in the environment is generally controlled by sorption reactions. The extent of sorption of divalent metal cations is controlled by a number of factors including cosorbing or complexing. In this work, the effects of pH, humic acid HA/Co(II) addition orders, ionic strength, concentration of HA, and foreign cations on the Co(II) sorption on γ-Al2O3 in the presence of HA were investigated. The sorption isotherms of Co(II) on γ-Al2O3 in the absence and presence HA were also studied and described by using S-type sorption model. The experimental results showed that the Co(II) sorption is strongly dependent on the pH values, concentration of HA, but independent of HA/Co(II) addition orders, ionic strength, and foreign cations in the presence of HA under our experimental conditions. The results also indicated that HA enhanced the Co(II) sorption at low pH, but reduced the Co(II) sorption at high pH. It was hypothesized that the significantly positive influence of HA at low pH on the Co(II) sorption on γ-Al2O3 was attributed to strong surface binding of HA on γ-Al2O3 and subsequently the formation of ternary surface complexes such as ≡S-OOC-R-(COO) x Co2−x . Chemi-complexation may be the main mechanism of the Co(II) sorption on γ-Al2O3 in the presence of HA.  相似文献   

18.
Investigations of the influence of the following metal ions: Ca, Mg, Ba, Cr, Mn,Co, Ni, Fe(II), Fe(III), Cu, Zn, Cd, Pb, Hg, Al and Ag on thermal decomposition of humic acids were carried out. Metal-humic compounds were obtained by ion exchange method and by complexing of metal cations on humic acids. For the investigations of thermal decomposition TG and DTA were used. Presence of metal ions in structure of humic acids mostly increases intensity of their thermal decomposition particularly the Hg and Cu ions.They shift this process to lower temperatures 100–300°C. Mass loss of organic matter in this temperature range in humic-mercury compounds are higher by more than 35%, and in humic-copper compounds are higher by more than 20% compared with the mass loss of humic acids itself. Ni and Co ions also increase the intensity of thermal decomposition of humic acids, but Ca, Ba and Mg ions inhibit that process. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
20.
Humic substances (HS) are a category of naturally occurring, biogenic, heterogeneous organic materials found in or extracted from soils, sediments, and natu- ral waters that can generally be characterized as being yellow-to-black in color, of highly variable relative molecular masses, and refractory[1,2]. Derived from a variety of organic precursors (plant biopolymers such as lignin etc.), plant residues and animal debris via both transformation and synthesis processes[3] under the profound ge…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号