首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
近些年来,吸附式制冷受到了广泛的关注。本文针对再吸附制冷工质对MnCl_2/CaCl_2/NH_3进行了研究,针对不同的热源温度、冷凝温度、蒸发温度,测试了该再吸附工质对的循环吸附量,并且分析了COP,结果表明:当热源温度为130℃时,再吸附循环的理论COP为0.48~0.8,在测试工况下,当热源温度达到150℃,冷却温度为25℃以及蒸发温度5℃时,循环吸附量最大值可以达到0.502 kg/kg,对不同的热源温度、冷凝温度、蒸发温度条件下,MnCl_2/CaCl_2/NH_3的吸附量为0.184~0.502 kg/kg。  相似文献   

2.
有机朗肯循环(ORC)是将中低品位能源转化为有用功的有效途径。传热过程不可逆损失大是导致ORC系统效率低的重要原因,基于混合工质的有机闪蒸循环(OFC)可以同时优化蒸发器和冷凝器换热过程的温度匹配,有望进一步提升ORC系统效率。本文选取R245ca/cyclopentane、pentane/isohexane等4种混合工质,通过热力学分析对比了200℃的饱和水为热源驱动下的混合工质ORC和OFC性能,获得了混合工质质量分数和热源出口温度对系统效率的影响。发现降低热源温度能显著提高OFC系统效率,而ORC系统存在最优热源出口温度。优化热源出口温度后,混合工质OFC系统效率能与ORC系统相当甚至在一定质量分数范围内超越ORC系统,其中,混合工质neopentane/cyclopentane质量分数为0.6时,OFC最高效率达到46.87%。  相似文献   

3.
以R601、R601a、R123、R227ea、R245fa、R600、R600a、R236ea为循环工质,以150℃地热水作为热源温度,建立了双级OFC系统模型,对系统的热性能进行了研究,同时揭示了不同工质的低压级最优闪蒸压力.结果 表明,当循环工质为R601,高压级闪蒸压力为630.53 kPa时,双级OFC的净输...  相似文献   

4.
氨水工质浓度可调型功冷联供循环   总被引:1,自引:1,他引:0  
本文提出一个新型氨水工质功冷联供循环,由氨水Rankine子循环和氨吸收式制冷子循环通过吸收、分离及换热过程耦合而成,可采用燃气轮机排烟等中低温热源驱动.通过设置分流、吸收式冷凝实现系统内氨水工质浓度变换,兼顾动力子循环加热蒸发和冷凝过程不同的浓度需求,达到改善换热过程匹配和提高透平作功能力的目的.计算表明,当透平进气温度为450℃时,循环热效率达25%~28%,??效率达45%~53%;且存在最佳分流比使热效率及??效率达到最佳.  相似文献   

5.
提出了一种新型串级连接,即将有机朗肯循环(ORC)与氯化钙/氯化钡两级吸附式制冷机组串联起来。ORC系统工质选为R245fa,假设等熵效率与功电转化效率乘积为0.4,当膨胀机进口压力从0.6 MPa变化到1.1 MPa,能量效率、效率、发电量变化范围分别是3.9%~5.5%、34%~31.5%、392~600 W,如果增加回热器后,能量效率从4.2%变化到6.0%;利用压缩空气模拟工质R245fa推动膨胀机,当进口压力为1 MPa时,膨胀机的等熵效率与功电转化效率乘积是0.53,发电量为300 W;两级吸附式制冷系统,当热源温度从75℃变化到95℃,制冷量、能量效率及媚效率变化范围分别是1.42~2.2 kW、13.4%~16.8%、18.1%~16.6%;有机朗肯循环与两级吸附制冷串连起来,热源温度为98℃时,系统总的能量效率为11.8%,媚效率为23.7%,发电量为560 W,制冷量是2.2 kW.  相似文献   

6.
有机朗肯循环(ORC)利用低温热源实现热电转化的技术特点,是实现余热有效回收利用的重要途径。基于R245fa为循环工质的ORC发电系统,研究低温热源温度变化对系统循环热效率与发电效率的影响。结果表明:在冷却端温度不变的工况下,热源温度的提高使循环蒸发压力上升,膨胀比增大,等熵效率提升,膨胀做功能力增强,系统循环热效率、熵效率、发电效率均增大。夏季运行,冷却水进水水温为(30±1)、(35±1)℃,热源温度从89.6℃升至112.5℃时,系统发电效率分别由6.9%、5.8%升到8.7%、7.4%,系统■效率分别由43.4%、38.8%升到62.7%、62.3%。  相似文献   

7.
本文基于R123、R245fa和异戊烷工质对中低温地热能有机朗肯循环发电系统的性能影响进行了分析,在地源热水温度为90~140℃时,计算冷凝器、蒸发器换热量、泵功率及系统的热效率、损失、不可逆损失等。结果表明:地热源温度越高,系统热效率越高,且同一热源温度下,异戊烷作为工质的系统热效率、损失最高,R245fa次之,R123均最低。  相似文献   

8.
地热作为一种在地球上广泛分布的可再生能源,可利用的温度较低。有机朗肯循环ORC是一种有效的利用低温热能发电的途径。对于不同温度的热源,采用合适的工质,可以提高系统的发电效率,因此工质的选择是关键。本文针对170℃,150℃,130℃的热源,构建了适合的五种混合工质,并进行了热力循环、环保性和安全性的计算。结果表明,与纯工质相比,混合工质可以平衡环境、安全以及系统性能等多方面的要求,达到综合最优的效果。  相似文献   

9.
本文构建了吸收式动力循环的Aspen Plus模拟。经过评选,选用HFC245fa+DMF体系作为吸收式动力循环的工质对,模拟获得了循环物流的状态参数与热力学性质数据。以系统的热效率和效率作为循环性能的评价指标,考察了循环在热源温度为280~400℃范围内的以HFC245fa+DMF为工质对的吸收式动力循环应用潜力与循环特性,并分析了构型对循环性能特性的影响。研究结果表明,随着热源温度的升高,循环的热效率提高;此外,相对于化学热机子循环,热机子循环对循环性能特性的影响较大。  相似文献   

10.
提出了一种低品位热驱动的混合工质双级分离式喷射制冷循环,将混合工质两级分凝分离原理引入喷射制冷循环,大大降低系统压比,实现在喷射制冷中获得较低的制冷温度的同时保证系统有较高制冷效率。建立组成循环各部件热力学数学模型,在系统稳定运行的条件下,分析中间温度对循环主流率、最低蒸发温度、喷射系数和系统性能系数的影响,并得到不同冷凝温度下系统性能系数随中间温度的变化规律。研究表明:新循环采用混合工质R600/R290可获得低于-20℃的制冷温度,中间温度对新循环的工作性能影响显著,合理选择中间温度有利于使该循环获得最低制冷温度和最高制冷效率。  相似文献   

11.
设计了一台以氯化钙/活性炭复合吸附剂和氨作为吸附工质对的多功能热管型吸附制冷机组,采用一种新型的基于二次回热的二级循环方式来降低驱动热源的温度梯度,吸附床的加热解吸、冷却吸附及回热过程均由无外加驱动力的多功能热管工作完成.研究结果表明:当解吸温度为103℃及冷却水温度为30℃时,回热型二级循环相对传统二级循环可显著提高机组的工作性能,制冷系数COP及单位质量吸附剂制冷功率SCP提高幅度均在23%以上;相对单级循环,二级吸附循环的最大优点在于能有效利用更低品位的余热和可再生能源作为驱动热源进行制冷,吸附制冷技术在低温热源场合的应用提供了有效途径.  相似文献   

12.
本文提出了一种OTEC(OTEC,Ocean Thermal Energy Conversion)增温再热朗肯动力循环,通过第二类吸收式热泵提升热源品质,在热力循环中创造一个相对高温区,与表层温海水共同对朗肯循环的湿工质进行过热,保证了透平出口干度,提升了循环的平均吸热温度,实现了单一热源下的梯级加热和能级匹配,系统效率得到较大的提升。论文构建了OTEC增温再热朗肯动力循环热力学模型,对比了增温再热朗肯动力循环与传统循环的热力性能,并分析了热泵子循环的最佳增温温度。结果表明:增温再热的效果与OTEC循环工质有较大关联,且存在最佳增温温度;对于采用R134A等近似等熵工质的OTEC循环,增温再热的热力性能提升不明显;而对于CO2等工作在亚临界区间的工质而言,增温再热可使热效率提升19.63%41.71%;对于NH3等过热需求较大工质而言,增温再热具有显著的提升效果;其中NH3工质的提升幅度最高,最佳增温温度为42.5°C,OTEC循环热效率可由2.34%提升至4.25%,升幅达84.45%。  相似文献   

13.
该文利用Aspen HYSYS软件模拟研究了环境温度、冷凝温度和冷凝器工质侧压降因素对有机朗肯循环系统性能的影响,系统采用工业低温废热作为热源,选择R123作为工质,并通过分析得出:受环境温度的影响,夏季的最大系统净功和循环热效率比冬季下降了4.13 kW、3.03%;冷凝温度从24℃上升为40℃时,系统净功和循环热效率分别降低了2.52 kW、1.87%。当冷凝器压降从0 kPa上升为40 kPa时,系统净功和热效率分别下降了1.41 kW、1.43%。  相似文献   

14.
《工程热物理学报》2021,42(10):2491-2500
为改善单目标评价局限性,获取双级有机朗肯循环(ORC)系统的综合最佳性能,选取8种有机工质,针对低温地热水,以输出功、热效率、效率、单位净功输出所需换热面积APR、单位电力产出成本LEC为评价指标,采用AHP-熵值法对其进行综合评价分析。结果表明,不同指标下最佳蒸发温度与最优工质不同;热源温度为373 K时,各工质综合评价指标ξ值为R1234yfR227eaR600aR1234zeR245faR236eaR236faRC318,高温级最佳蒸发温度为351 K,低温级最佳蒸发温度为330 K;热源温度为383 K、393 K、403 K、413 K、423 K、433 K时,最优工质为R1234yf、R227ea、R245fa、R236fa、R236fa、R600a,最佳蒸发温度随热源温度升高逐渐升高,接近临界温度后具有下降趋势,各工质在接近临界温度工作时具有较高性能。  相似文献   

15.
本文在100~130℃的冷凝温度范围内,以HFCs、HCFCs和HFEs类纯质为研究对象,开展了五种两级压缩循环方式下,高温热泵工质的理论筛选研究,并以R245fa为工质,比较了在不同循环方式下工质的理论循环性能。研究结果表明,R245fa、E143和R123在两级压缩完全冷却系统中的综合性能优良,E245cb、R245ca、E245fa和R245fa在两级压缩不完全冷却系统中的综合理论循环性能良好;两级压缩循环方式下工质的COP_h较单级压缩系统有较大提高,排气温度明显降低,压缩机的工作条件得到改善,因此有利于提高热泵的工作温度水平和系统的性能。  相似文献   

16.
根据有机朗肯循环(ORC)蒸发器中夹点出现的位置,将其换热过程分为夹点出现在预热起始点(PPP)、夹点出现在工质汽化起始点(VPP)、以及夹点同时出现在预热起始点和汽化起始点(PVPP)三种情况,定义吸热工质和热源流体的热容流率之比为热容比ε,经分析发现PPP,PVPP,VPP三种换热过程分别对应ε1,ε=1,ε1的情况,即可用ε判断夹点出现的位置.讨论夹点温差一定时,热源温度和蒸发温度对夹点位置的影响,发现随着热源温度和蒸发温度的升高,蒸发器的换热过程逐渐由VPP(ε1)变化到PVPP(ε=1)再变化为PPP(ε1).使用基于(火积)耗散率定义的当量热阻来度量换热过程的不可逆性,对比分析三种换热过程对热回收量和当量热阻的影响情况,发现换热过程为PVPP(ε=1)时蒸发器热回收量最大、当量热阻最小.最后对于热源条件确定的蒸发器,以ε=1为目标函数,同时对循环工质和运行参数进行优化。  相似文献   

17.
本文选取湿流体R134a与R152a和干流体R123与R245fa为工质,对亚临界有机朗肯循环,采用不同的优化目标,进行了蒸发温度和冷凝温度的优化分析。在冷凝温度一定条件下,探讨了蒸发温度对系统性能的影响以及热源初始温度对工质最佳蒸发温度的影响。结果表明,在常见的排烟温度423.15 K条件下,采用干工质,不同优化目标下蒸发温度和冷凝温度优化值差异较大;而湿工质的蒸发温度和冷凝温度优化值差异较小。采用湿工质的系统优化的净电功大于干工质的,但热效率低。湿流体R134a与R152a临界温度低于热源初始温度(20±2)K时,系统存在最佳蒸发温度。可以合理调节系统部件中(火用)损来改变系统热力学性能。  相似文献   

18.
地热能是重要的可再生能源,位于地下深处的分布形式符合重力驱动CO_2跨临界动力循环应用特点,并且可以耦合CO_2地下封存。以地热能为热源,对重力驱动CO_2跨临界动力循环开展研究。研究结果表明,循环系统位差随循环加热压力的升高而升高;循环热效率和净输出功率与循环加热压力成正相关关系;由于单位质量CO_2吸热能力的降低,工质质量流量随循环加热压力的升高而升高;冷却水质量流量和工质质量流量变化规律相似;当加热压力为16 MPa,热源温度为400℃时,循环热效率为12.27%,净输出功率为178.46 kW。  相似文献   

19.
传统的吸收式循环因溶液结晶问题而限制了其在储能领域的应用。本文提出了一种不受温度限制的可应用于跨季节储能的三相吸收循环,该循环将允许的工作区间扩展到了结晶固态区,并利用三相结晶过程和脱水化学反应来增强储能能力.对LiCl/H_2O,CaCl_2/H_2O和LiBr/H_2O三种工质对的理论研究表明,三相结晶过程的出现使循环的储能密度得到成倍的增加,LiCl/H_2O的储能密度由充能温度为86℃时的385 Wh/kg增加到88℃时的901 Wh/kg.LiCl/H_2O在各种工况下都表现了很好的性能,是现实三相吸收跨季节储能循环的最佳工质对.  相似文献   

20.
中高温地热热泵系统的试验研究   总被引:5,自引:0,他引:5  
为提高地热能的利用率,本文针对以40℃~45℃地热尾水为低温热源的中高温地热热泵系统进行了理论及实验研究。首先,根据理论分析筛选出能够满足实际运行和环保要求的循环工质;其次,将该工质应用于实际系统并根据不同的冷凝器水流量和冷凝器的进口水温测得了大量实际数据,进而检验了该工质的实际性能  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号