首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Let W n ( \mathbb K {\mathbb K} ) be the Lie algebra of derivations of the polynomial algebra \mathbb K {\mathbb K} [X] := \mathbb K {\mathbb K} [x 1,…,x n ]over an algebraically closed field \mathbb K {\mathbb K} of characteristic zero. A subalgebra L í Wn(\mathbbK) L \subseteq {W_n}(\mathbb{K}) is called polynomial if it is a submodule of the \mathbb K {\mathbb K} [X]-module W n ( \mathbb K {\mathbb K} ). We prove that the centralizer of every nonzero element in L is abelian, provided that L is of rank one. This fact allows one to classify finite-dimensional subalgebras in polynomial Lie algebras of rank one.  相似文献   

4.
Let ${\mathbb {F}}Let \mathbb F{\mathbb {F}} a finite field. We show that the universal characteristic factor for the Gowers–Host–Kra uniformity seminorm U k (X) for an ergodic action (Tg)g ? \mathbb Fw{(T_{g})_{{g} \in \mathbb {F}^{\omega}}} of the infinite abelian group \mathbb Fw{\mathbb {F}^{\omega}} on a probability space X = (X, B, m){X = (X, \mathcal {B}, \mu)} is generated by phase polynomials f: X ? S1{\phi : X \to S^{1}} of degree less than C(k) on X, where C(k) depends only on k. In the case where k £ char(\mathbb F){k \leq {\rm char}(\mathbb {F})} we obtain the sharp result C(k) = k. This is a finite field counterpart of an analogous result for \mathbb Z{\mathbb {Z}} by Host and Kra [HK]. In a companion paper [TZ] to this paper, we shall combine this result with a correspondence principle to establish the inverse theorem for the Gowers norm in finite fields in the high characteristic case k £ char(\mathbb F){k \leq {\rm char}(\mathbb {F})} , with a partial result in low characteristic.  相似文献   

5.
We consider the spectral decomposition of A, the generator of a polynomially bounded n-times integrated group whose spectrum set $\sigma(A)=\{i\lambda_{k};k\in\mathbb{\mathbb{Z}}^{*}\}We consider the spectral decomposition of A, the generator of a polynomially bounded n-times integrated group whose spectrum set s(A)={ilk;k ? \mathbb\mathbbZ*}\sigma(A)=\{i\lambda_{k};k\in\mathbb{\mathbb{Z}}^{*}\} is discrete and satisfies ?\frac1|lk|ldkn < ¥\sum \frac{1}{|\lambda_{k}|^{\ell}\delta_{k}^{n}}<\infty , where is a nonnegative integer and dk=min(\frac|lk+1-lk|2,\frac|lk-1-lk|2)\delta _{k}=\min(\frac{|\lambda_{k+1}-\lambda _{k}|}{2},\frac{|\lambda _{k-1}-\lambda _{k}|}{2}) . In this case, Theorem 3, we show by using Gelfand’s Theorem that there exists a family of projectors (Pk)k ? \mathbb\mathbbZ*(P_{k})_{k\in\mathbb{\mathbb{Z}}^{*}} such that, for any xD(A n+ ), the decomposition ∑P k x=x holds.  相似文献   

6.
This paper continues the study of associative and Lie deep matrix algebras, DM(X,\mathbbK){\mathcal{DM}}(X,{\mathbb{K}}) and \mathfrakgld(X,\mathbbK){\mathfrak{gld}}(X,{\mathbb{K}}), and their subalgebras. After a brief overview of the general construction, balanced deep matrix subalgebras, BDM(X,\mathbbK){\mathcal{BDM}}(X,{\mathbb{K}}) and \mathfrakbld(X,\mathbbK){\mathfrak{bld}}(X,{\mathbb{K}}), are defined and studied for an infinite set X. The global structures of these two algebras are studied, devising a depth grading on both as well as determining their ideal lattices. In particular, \mathfrakbld(X,\mathbbK){\mathfrak{bld}}(X,{\mathbb{K}}) is shown to be semisimple. The Lie algebra \mathfrakbld(X,\mathbbK){\mathfrak{bld}}(X,{\mathbb{K}}) possesses a deep Cartan decomposition and is locally finite with every finite subalgebra naturally enveloped by a semi-direct product of \mathfraksln{\mathfrak{{sl}_n}}’s. We classify all associative bilinear forms on \mathfraksl2\mathfrakd{\mathfrak{sl}_2\mathfrak{d}} (a natural depth analogue of \mathfraksl2{\mathfrak{{sl}_2}}) and \mathfrakbld{\mathfrak{bld}}.  相似文献   

7.
When X is a finite complex and p1X\pi_{1}X acts on \mathbbR2{\mathbb{R}}^2 by translations we give criteria involving H2X for an equivariant map F : [(X)\tilde] ? \mathbbR2F : \tilde{X} \rightarrow {\mathbb{R}}^2 to be onto. Following work of Manning and Shub, this leads to entropy bounds related to Shub’s entropy conjecture.  相似文献   

8.
Let \mathbb Dn:={z=(z1,?, zn) ? \mathbb Cn:|zj| < 1,   j=1,?, n}{\mathbb {D}^n:=\{z=(z_1,\ldots, z_n)\in \mathbb {C}^n:|z_j| < 1, \;j=1,\ldots, n\}}, and let [`(\mathbbD)]n{\overline{\mathbb{D}}^n} denote its closure in \mathbb Cn{\mathbb {C}^n}. Consider the ring
Cr([`(\mathbbD)]n;\mathbb C) = {f:[`(\mathbbD)]n? \mathbb C:f   is   continuous   and  f(z)=[`(f([`(z)]))]   (z ? [`(\mathbbD)]n)}C_{\rm r}(\overline{\mathbb{D}}^n;\mathbb {C}) =\left\{f: \overline{\mathbb{D}}^n\rightarrow \mathbb {C}:f \,\, {\rm is \,\, continuous \,\, and}\,\, f(z)=\overline{f(\overline{z})} \;(z\in \overline{\mathbb{D}}^n)\right\}  相似文献   

9.
Let X be a Banach space with a separable dual X*. Let ${Y\subset X}Let X be a Banach space with a separable dual X*. Let Y ì X{Y\subset X} be a closed subspace, and f:Y?\mathbbR{f:Y\rightarrow\mathbb{R}} a C 1-smooth function. Then we show there is a C 1 extension of f to X.  相似文献   

10.
Let ${\mathbb{A}}Let \mathbbA{\mathbb{A}} be a universal algebra of signature Ω, and let I{\mathcal{I}} be an ideal in the Boolean algebra P\mathbbA{\mathcal{P}_{\mathbb{A}}} of all subsets of \mathbbA{\mathbb{A}} . We say that I{\mathcal{I}} is an Ω-ideal if I{\mathcal{I}} contains all finite subsets of \mathbbA{\mathbb{A}} and f(An) ? I{f(A^{n}) \in \mathcal{I}} for every n-ary operation f ? W{f \in \Omega} and every A ? I{A \in \mathcal{I}} . We prove that there are 22à0{2^{2^{\aleph_0}}} Ω-ideals in P\mathbbA{\mathcal{P}_{\mathbb{A}}} provided that \mathbbA{\mathbb{A}} is countably infinite and Ω is countable.  相似文献   

11.
Let ${\mathbb{G}}Let \mathbbG{\mathbb{G}} be a Carnot group of step r and m generators and homogeneous dimension Q. Let \mathbbFm,r{\mathbb{F}_{m,r}} denote the free Lie group of step r and m generators. Let also p:\mathbbFm,r?\mathbbG{\pi:\mathbb{F}_{m,r}\to\mathbb{G}} be a lifting map. We show that any horizontally convex function u on \mathbbG{\mathbb{G}} lifts to a horizontally convex function u°p{u\circ \pi} on \mathbbFm,r{\mathbb{F}_{m,r}} (with respect to a suitable horizontal frame on \mathbbFm,r{\mathbb{F}_{m,r}}). One of the main aims of the paper is to exhibit an example of a sub-Laplacian L=?j=1m Xj2{\mathcal{L}=\sum_{j=1}^m X_j^2} on a Carnot group of step two such that the relevant L{\mathcal{L}}-gauge function d (i.e., d 2-Q is the fundamental solution for L{\mathcal{L}}) is not h-convex with respect to the horizontal frame {X 1, . . . , X m }. This gives a negative answer to a question posed in Danielli et al. (Commun. Anal. Geom. 11 (2003), 263–341).  相似文献   

12.
13.
Let ${\Phi : \mathbb{R} \to [0, \infty)}Let F: \mathbbR ? [0, ¥){\Phi : \mathbb{R} \to [0, \infty)} be a Young function and let f = (fn)n ? \mathbbZ+{f = (f_n)_n\in\mathbb{Z}_{+}} be a martingale such that F(fn) ? L1{\Phi(f_n) \in L_1} for all n ? \mathbbZ+{n \in \mathbb{Z}_{+}} . Then the process F(f) = (F(fn))n ? \mathbbZ+{\Phi(f) = (\Phi(f_n))_n\in\mathbb{Z}_{+}} can be uniquely decomposed as F(fn)=gn+hn{\Phi(f_n)=g_n+h_n} , where g=(gn)n ? \mathbbZ+{g=(g_n)_n\in\mathbb{Z}_{+}} is a martingale and h=(hn)n ? \mathbbZ+{h=(h_n)_n\in\mathbb{Z}_{+}} is a predictable nondecreasing process such that h 0 = 0 almost surely. The main results characterize those Banach function spaces X such that the inequality ||h||XC ||F(Mf) ||X{\|{h_{\infty}}\|_{X} \leq C \|{\Phi(Mf)} \|_X} is valid, and those X such that the inequality ||h||XC ||F(Sf) ||X{\|{h_{\infty}}\|_{X} \leq C \|{\Phi(Sf)} \|_X} is valid, where Mf and Sf denote the maximal function and the square function of f, respectively.  相似文献   

14.
Let (tj)j ? \mathbbN{\left(\tau_j\right)_{j\in\mathbb{N}}} be a sequence of strictly positive real numbers, and let A be the generator of a bounded analytic semigroup in a Banach space X. Put An=?j=1n(I+\frac12 tjA) (I-\frac12 tjA)-1{A_n=\prod_{j=1}^n\left(I+\frac{1}{2} \tau_jA\right) \left(I-\frac{1}{2} \tau_jA\right)^{-1}}, and let x ? X{x\in X}. Define the sequence (xn)n ? \mathbbN ì X{\left(x_n\right)_{n\in\mathbb{N}}\subset X} by the Crank–Nicolson scheme: x n  = A n x. In this paper, it is proved that the Crank–Nicolson scheme is stable in the sense that supn ? \mathbbN||Anx|| < ¥{\sup_{n\in\mathbb{N}}\left\Vert A_nx\right\Vert<\infty}. Some convergence results are also given.  相似文献   

15.
Given a closed subspace ${\mathcal{S}}Given a closed subspace S{\mathcal{S}} of a Hilbert space H{\mathcal{H}}, we study the sets FS{\mathcal{F}_\mathcal{S}} of pseudo-frames, CFS{\mathcal{C}\mathcal{F}_\mathcal{S}} of commutative pseudo-frames and \mathfrakXS{\tiny{\mathfrak{X}}_{\mathcal{S}}} of dual frames for S{\mathcal{S}}, via the (well known) one to one correspondence which assigns a pair of operators (F, H) to a frame pair ({fn}n ? \mathbbN,{hn}n ? \mathbbN){(\{f_n\}_{n\in\mathbb{N}},\{h_n\}_{n\in\mathbb{N}})},
F:l2H,     F({cn}n ? \mathbbN )=?n cn fn,F:\ell^2\to\,\mathcal{H}, \quad F\left(\{c_n\}_{n\in\mathbb{N}} \right)=\sum_n c_n f_n,  相似文献   

16.
Let ${\mathfrak{g}}Let \mathfrakg{\mathfrak{g}} be a finite dimensional simple Lie algebra over an algebraically closed field \mathbbK\mathbb{K} of characteristic 0. Let \mathfrakg\mathbbZ{\mathfrak{g}}_{{\mathbb{Z}}} be a Chevalley ℤ-form of \mathfrakg{\mathfrak{g}} and \mathfrakg\Bbbk=\mathfrakg\mathbbZ?\mathbbZ\Bbbk{\mathfrak{g}}_{\Bbbk}={\mathfrak{g}}_{{\mathbb{Z}}}\otimes _{{\mathbb{Z}}}\Bbbk, where \Bbbk\Bbbk is the algebraic closure of  \mathbbFp{\mathbb{F}}_{p}. Let G\BbbkG_{\Bbbk} be a simple, simply connected algebraic \Bbbk\Bbbk-group with \operatornameLie(G\Bbbk)=\mathfrakg\Bbbk\operatorname{Lie}(G_{\Bbbk})={\mathfrak{g}}_{\Bbbk}. In this paper, we apply recent results of Rudolf Tange on the fraction field of the centre of the universal enveloping algebra U(\mathfrakg\Bbbk)U({\mathfrak{g}}_{\Bbbk}) to show that if the Gelfand–Kirillov conjecture (from 1966) holds for \mathfrakg{\mathfrak{g}}, then for all p≫0 the field of rational functions \Bbbk (\mathfrakg\Bbbk)\Bbbk ({\mathfrak{g}}_{\Bbbk}) is purely transcendental over its subfield \Bbbk(\mathfrakg\Bbbk)G\Bbbk\Bbbk({\mathfrak{g}}_{\Bbbk})^{G_{\Bbbk}}. Very recently, it was proved by Colliot-Thélène, Kunyavskiĭ, Popov, and Reichstein that the field of rational functions \mathbbK(\mathfrakg){\mathbb{K}}({\mathfrak{g}}) is not purely transcendental over its subfield \mathbbK(\mathfrakg)\mathfrakg{\mathbb{K}}({\mathfrak{g}})^{\mathfrak{g}} if \mathfrakg{\mathfrak{g}} is of type B n , n≥3, D n , n≥4, E6, E7, E8 or F4. We prove a modular version of this result (valid for p≫0) and use it to show that, in characteristic 0, the Gelfand–Kirillov conjecture fails for the simple Lie algebras of the above types. In other words, if \mathfrakg{\mathfrak{g}} is of type B n , n≥3, D n , n≥4, E6, E7, E8 or F4, then the Lie field of \mathfrakg{\mathfrak{g}} is more complicated than expected.  相似文献   

17.
In this paper, we consider the Schrödinger type operator ${H = (-\Delta _{\mathbb {H}}^n)^2 +V ^{2}}In this paper, we consider the Schr?dinger type operator H = (-D\mathbb Hn)2 +V 2{H = (-\Delta _{\mathbb {H}}^n)^2 +V ^{2}}, where the nonnegative potential V belongs to the reverse H?lder class Bq1 for q1 3 \frac Q 2,Q 3 6{B_{{q}_{1}}\, {\rm for}\, q_{1}\geq {\frac {Q}{ 2}},Q \geq 6}, and D\mathbb Hn{\Delta_{\mathbb {H}^n}} is the sublaplacian on the Heisenberg group \mathbb Hn{\mathbb {H}^n}. An L p estimate and a weak type L 1 estimate for the operator ?4\mathbb Hn H-1{\nabla^4_{\mathbb {H}^n} H^{-1}} when V ? Bq1{V \in B_{{q}_{1}}} for 1 < p £ \fracq12{1 < p \leq \frac{q_{1}}{2}} are obtained.  相似文献   

18.
Let α be a complex number of modulus strictly greater than 1, and let ξ ≠ 0 and ν be two complex numbers. We investigate the distribution of the sequence ξ α n  + ν, n = 0, 1, 2, . . . , modulo ${\mathbb{Z}[i],}Let α be a complex number of modulus strictly greater than 1, and let ξ ≠ 0 and ν be two complex numbers. We investigate the distribution of the sequence ξ α n  + ν, n = 0, 1, 2, . . . , modulo \mathbbZ[i],{\mathbb{Z}[i],} where i=?{-1}{i=\sqrt{-1}} and \mathbbZ[i]=\mathbbZ+i\mathbbZ{\mathbb{Z}[i]=\mathbb{Z}+i\mathbb{Z}} is the ring of Gaussian integers. For any z ? \mathbbC,{z\in \mathbb{C},} one may naturally call the quantity z modulo \mathbbZ[i]{\mathbb{Z}[i]} the fractional part of z and write {z} for this, in general, complex number lying in the unit square S:={z ? \mathbbC:0 £ \mathfrakR(z),\mathfrakJ(z) < 1 }{S:=\{z\in\mathbb{C}:0\leq \mathfrak{R}(z),\mathfrak{J}(z) <1 \}}. We first show that if α is a complex non-real number which is algebraic over \mathbbQ{\mathbb{Q}} and satisfies |α| > 1 then there are two limit points of the sequence {ξ α n  +ν}, n = 0, 1, 2, . . . , which are ‘far’ from each other (in terms of α only), except when α is an algebraic integer whose conjugates over \mathbbQ(i){\mathbb{Q}(i)} all lie in the unit disc |z| ≤  1 and x ? \mathbbQ(a,i).{\xi\in\mathbb{Q}(\alpha,i).} Then we prove a result in the opposite direction which implies that, for any fixed a ? \mathbbC{\alpha\in\mathbb{C}} of modulus greater than 1 and any sequence zn ? \mathbbC,n=0,1,2,...,{z_n\in\mathbb{C},n=0,1,2,\dots,} there exists x ? \mathbbC{\xi \in \mathbb{C}} such that the numbers ξ α n z n , n = 0, 1, 2, . . . , all lie ‘far’ from the lattice \mathbbZ[i]{\mathbb{Z}[i]}. In particular, they all can be covered by a union of small discs with centers at (1+i)/2+\mathbbZ[i]{(1+i)/2+\mathbb{Z}[i]} if |α| is large.  相似文献   

19.
We prove that the F-jumping numbers of the test ideal t(X; D, \mathfrakat){\tau(X; \Delta, \mathfrak{a}^t)} are discrete and rational under the assumptions that X is a normal and F-finite scheme over a field of positive characteristic p, K X  + Δ is \mathbb Q{\mathbb {Q}}-Cartier of index not divisible p, and either X is essentially of finite type over a field or the sheaf of ideals \mathfraka{\mathfrak{a}} is locally principal. This is the largest generality for which discreteness and rationality are known for the jumping numbers of multiplier ideals in characteristic zero.  相似文献   

20.
Fourier series are considered on the one-dimensional torus for the space of periodic distributions that are the distributional derivative of a continuous function. This space of distributions is denoted Ac(\mathbbT){\mathcal{A}}_{c}(\mathbb{T}) and is a Banach space under the Alexiewicz norm, ||f||\mathbbT=sup|I| £ 2pI f|\|f\|_{\mathbb{T}}=\sup_{|I|\leq2\pi}|\int_{I} f|, the supremum being taken over intervals of length not exceeding 2π. It contains the periodic functions integrable in the sense of Lebesgue and Henstock–Kurzweil. Many of the properties of L 1 Fourier series continue to hold for this larger space, with the L 1 norm replaced by the Alexiewicz norm. The Riemann–Lebesgue lemma takes the form [^(f)](n)=o(n)\hat{f}(n)=o(n) as |n|→∞. The convolution is defined for f ? Ac(\mathbbT)f\in{\mathcal{A}}_{c}(\mathbb{T}) and g a periodic function of bounded variation. The convolution commutes with translations and is commutative and associative. There is the estimate ||f*g|| £ ||f||\mathbbT ||g||BV\|f\ast g\|_{\infty}\leq\|f\|_{\mathbb{T}} \|g\|_{\mathcal{BV}}. For g ? L1(\mathbbT)g\in L^{1}(\mathbb{T}), ||f*g||\mathbbT £ ||f||\mathbb T ||g||1\|f\ast g\|_{\mathbb{T}}\leq\|f\|_{\mathbb {T}} \|g\|_{1}. As well, [^(f*g)](n)=[^(f)](n) [^(g)](n)\widehat{f\ast g}(n)=\hat{f}(n) \hat{g}(n). There are versions of the Salem–Zygmund–Rudin–Cohen factorization theorem, Fejér’s lemma and the Parseval equality. The trigonometric polynomials are dense in Ac(\mathbbT){\mathcal{A}}_{c}(\mathbb{T}). The convolution of f with a sequence of summability kernels converges to f in the Alexiewicz norm. Let D n be the Dirichlet kernel and let f ? L1(\mathbbT)f\in L^{1}(\mathbb{T}). Then ||Dn*f-f||\mathbbT?0\|D_{n}\ast f-f\|_{\mathbb{T}}\to0 as n→∞. Fourier coefficients of functions of bounded variation are characterized. The Appendix contains a type of Fubini theorem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号