首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The problems connected with the measurement of hydrocarbons outside urban areas are considerable: The atmospheric mixing ratios of most of the hydrocarbons are very low--from a few ppb down to some ppt; the mixture of hydrocarbons is extremely complex, ranging from light n-alkanes to alkyl benzenes and terpenes; for measurements in remote areas the logistic conditions often restrict the instrumentation which can be used for sample collection or in situ measurements (such as lack of electric power supply, weight restrictions etc.). Nevertheless, sensitive and sufficiently reliable measurements of hydrocarbons in the non-urban atmosphere are important. Hydrocarbons are important factors in the tropospheric photochemistry (e.g. ozone formation) and can be used as valuable tracers for man-made atmospheric pollutants etc. Other useful tracers for anthropogenic emission are halocarbons such as dichlormethane, tri- and tetrachloroethen etc. The impact of man-made hydrocarbons on the chemistry of the troposphere can only be understood if the extent of natural (biogenic) contributions is known. From measurements of a large variety of hydrocarbons and halocarbons it is often possible to obtain information about the sources of the most important atmospheric hydrocarbon species, even for trace gases with both significant anthropogenic and biogenic sources. In this presentation some of the problems and their solutions connected with such measurements of atmospheric hydrocarbons and halocarbons are presented and discussed. Some of the results obtained by several series of measurements are described, indicating that man-made as well as biogenic hydrocarbons can be important factors for the chemistry of the atmosphere.  相似文献   

2.
Biogenic terpenes play important roles in ecosystem functioning and atmospheric chemistry. Some of these compounds are semi-volatile and highly reactive, such as sesquiterpenes and oxygenated terpenes, and are thus difficult to quantify using traditional air sampling and analysis methods. We developed an alternative approach to quantify emissions from live branches using a flow through enclosure and sample collection on solid-phase microextraction (SPME) fibers. This method allows for collection and analysis of analytes with minimal sample transfer through tubing to reduce the potential for losses. We characterized performance characteristics for 65 microm polydimethylsiloxane-divinylbenzene (PDMS/DVB) fibers using gas chromatography followed by mass spectrometry and optimized experimental conditions and procedures for field collections followed by laboratory analysis. Using 10-45 min sampling times and linear calibration curves created from mixtures of terpenes, emissions of methyl chavicol, an oxygenated terpene, and an array of sesquiterpenes were quantified from a Ponderosa pine branch. The detection limit was 4.36 pmol/mol (ppt) for methyl chavicol and 16.6 ppt for beta-caryophyllene. Concentrations determined with SPME fibers agreed with measurements made using proton transfer reaction mass spectrometry (PTR-MS) within the estimated error of the method for well calibrated compounds. This technique can be applied for quantification of biogenic oxygenated terpene and sesquiterpene emissions from live branches in the field.  相似文献   

3.
Abstract

An analytical procedure for the sampling and quantitative determination of biogenic hydrocarbons in the atmosphere is presented. The method is based on the adsorptive preconcentration of the hydrocarbons using Tenax TA/Carbopack B filled sampling tubes followed by thermodesorption of the trapped compounds and gas chromatographic analysis. To avoid losses of the biogenic alkenes as a consequence of their reaction with ozone on the adsorbents during the sampling step, an ozone scrubber is used in front of the adsorption tubes. Diurnal variations of the monoterpene- and ozone-concentrations are determined at different heights in and above a forest stand (coniferous and deciduous trees) in the Vosges (Col du Donon, 760 m a.s.l.) in order to elucidate the importance of terpene-oxidation reactions on the formation of peroxidic products in forest air.  相似文献   

4.
Analyses of hydrocarbon fractions from different areas of the marine environment are described to illustrate the possibilities and limitations of high resolution gas chromatography (HRGC) in the analysis of environmental samples. Examples are given of dissolved, particulate, and sedimentary hydrocarbons and organochlorine compounds; the importance of an adequate sampling of the marine environment is stressed. HR chromatographic profiles obtained in two columns of low and high polarity (SE-52 and PEG 20M) permit the sources and transport pathways of both natural and anthropogenic hydrocarbons to be traced. Analysis of tissues of marine mammals, which metabolize or excrete many of the biogenic and petrogenic hydrocarbons present in other areas of the marine environment, may provide an opportunity to obtain relatively clean profiles of many anthropogenic compounds of interest. The plotting of mass chromatograms from data compiled by COM-GC-MS remains the most appropriate method for the conclusive indentification of these compounds.  相似文献   

5.
Cold-pressed plant oils are of high interest to consumers due to their unique and interesting flavors. As they are usually only pressed at low temperatures and filtered, without further processing stages (as refining), they preserve their character that originates from the plant the oil was extracted from. Coriander cold pressed oil is gaining popularity as a novel product, obtained from its fruits/seeds; due to the high amount of terpenes, it has very characteristic flavor. A novel, vacuum-assisted sorbent extraction (VASE) method was used to extract terpenes from coriander cold pressed oil. Optimal parameters were determined. The profile of compounds extracted using VASE was compared with that of classic hydrodistillation method. Moreover, 17 monoterpene hydrocarbons and alcohols were identified with β-linalool as the main compound, followed by α-pinene, γ-terpinene, camphor, sylvestrene, β-pinene, and o-cymene. Differences were noted between profiles of terpenes after hydrodistillation and VASE extraction. For 8 out of 17 terpenes, VASE was used for their quantitative analysis. Regarding simplicity of the method, small sample requirement (200 mg) and short extraction time (5 min), VASE combined with GC/MS is well suited for characterization of terpenes in such matrix as plant oils.  相似文献   

6.
Cannabis has garnered a great deal of new attention in the past couple of years in the United States due to the increasing instances of its legalization for recreational use and indications for medicinal benefit. Despite a growing number of laboratories focused on cannabis analysis, the separation science literature pertaining to the determination of cannabis natural products is still in its infancy despite the plant having been utilized by humans for nearly 30 000 years and it being now the most widely used drug worldwide. This is largely attributable to the restrictions associated with cannabis as it is characterized as a schedule 1 drug in the United States. Presented here are reviewed analytical methods for the determination of cannabinoids (primarily) and terpenes (secondarily), the primary natural products of interest in cannabis plants. Focus is placed foremost on analyses from plant extracts and the various instrumentation and techniques that are used, but some coverage is also given to analysis of cannabinoid metabolites found in biological fluids. The goal of this work is to provide a collection of relevant separation science information, upon which the field of cannabis analysis can continue to grow.  相似文献   

7.
It is argued that isotope analysis of atmospheric non-methane hydrocarbons (NMHCs) and, in particular, the analysis of the deuterium/hydrogen (D/H) ratio is valuable because the dominant self-cleansing property of the troposphere is based on the OH radical which removes, e.g., CH4 and other alkanes by H-atom abstraction, which induces large kinetic isotope effects. The major obstacle in applying D/H isotope analysis to atmospheric NMHCs is not only the low abundance of D itself but, in particular, the low concentrations of NMHCs in the parts per trillion range. We show how a selection of NMHCs can be quantitatively separated from 300 L air samples together with CO2 as carrier gas matrix, by using high efficiency cryogenic traps. After diluting the extracted NMHC mixtures with hydrocarbon free air, and determining the mixing ratios, good agreement with original whole air sample analysis exists for alkanes and several halocarbons. For unsaturated hydrocarbons and some other halocarbons the extraction and recovery yield under the given conditions fell considerably, as a function of boiling point. Furthermore, the mixture of NMHCs in the CO2 matrix is proven to remain unchanged over several years when conveniently stored in glass ampoules. The 'extracts' or 'concentrates' of condensables extracted from larger air samples will enable the D/H isotope analysis of ultra trace gases in the atmosphere.  相似文献   

8.
Membrane extraction with sorbent interface, combined with a portable gas chromatograph system (MESI-Portable GC) for continuous on-line monitoring of biogenic volatile organic compounds (BVOCs) emissions (from leaves of Eucalytus dunnii in a greenhouse), is presented herein. A sampling chamber was designed to facilitate the extraction and identification of the BVOCs emitted by the Eucalytus dunnii leaves. Preliminary experiments, including; enrichment times, microtrap temperatures, stripping gas flow rates, and desorption temperatures were investigated to optimize experimental parameters. The main components of BVOCs released by the Eucalytus dunnii leaves were identified by comparing the retention times of peaks with those of authentic standard solutions. They were then confirmed with solid phase microextraction coupled with gas chromatography and mass spectrometry (SPME-GC-MS). BVOC emission profiles of [small alpha]-pinene, eucalyptol, and [gamma]-terpinene emitted by intact and damaged Eucalytus dunnii leaves were obtained. The findings suggest that the MESI-Portable GC system is a simple and useful tool for field monitoring changes in plant emissions as a function of time.  相似文献   

9.
The development of sustainable renewable polymers from natural resources has increasingly gained attention from scientists, engineers as well as the general public and government agencies. This review covers recent progress in the field of renewable bio‐based monomers and polymers from natural resources: terpenes, terpenoids, and rosin, which are a class of hydrocarbon‐rich biomass with abundance and low cost, holding much potential for utilization as organic feedstocks for green plastics and composites. This review details polymerization and copolymerization of terpenes such as pinene, limonene, and myrcene and their derivatives, terpenoids including carvone and menthol, and rosin‐derived monomers. The future direction on the utilization of these natural resources is discussed.  相似文献   

10.
An automated system for continuous on-line monitoring of biogenic emissions is presented. The system is designed in such a way that volatiles, emitted as reaction to biotic or abiotic stress, can be unequivocally elucidated. Two identical sampling units, named target and reference bulb, are therefore incorporated into the system and consecutively analyzed in monitoring experiments. A number of precautions were considered during these experiments to avoid the application of unwanted stress onto both organisms. Firstly, the system is constructed in such a way that both bulbs are continuously flushed, i.e. before, during and after analysis, with high purity air to avoid any accumulation of emitted volatiles. Moreover, the air is pre-humidified by bubbling it through water to sustain the biological samples for longer periods in the in vitro environment. Sorptive enrichment on polydimethylsiloxane (PDMS) was used to trap the headspace volatiles. The hydrophobic nature of this material permitted easy removal of trapped moisture by direct flushing of the sampling cartridge with dry air before desorption. The system was used to monitor the emissions from in vitro mechanically wounded ivy (Hedera helix) and of in vitro grown tomato plants (Lycopersicon esculentum Mill.) upon cotton leafworm (Spodoptera littoralis) feeding. Differences in light and dark floral emissions of jasmine (Jasminum polyanthum) were also studied.  相似文献   

11.
A gas chromatographic system was constructed to simultaneously measure ambient non-methane hydrocarbons (NMHCs) and halocarbons, which play significant roles in tropospheric ozone formation and stratospheric ozone loss, respectively. A heart-cut device based on a Deans switch was connected to two capillary columns to cover the full range of NMHCs and halocarbons. Analytes more volatile than C6 NMHCs and the halocarbon CFC-113 were separated with a PLOT column, while the remaining less volatile compounds were separated with a DB-1 column. Merge-and-split of the flows at the end of the two columns allowed the NMHCs and halocarbons to be observed simultaneously by electron capture detection (ECD) and flame ionization detection (FID). To avoid peak-overlap from the two columns while merging, programmed pressures were incorporated to control the Deans switch. In addition to the advantage of measuring two important classes of compounds in the atmosphere at the same time, this method has the additional benefit of using the homogeneity of atmospheric CFC-113 as an “intrinsic” internal reference. Thus, better data continuity, less consumption of gas standards, and real-time quality control can all be achieved.  相似文献   

12.
The results of a study to evaluate a recently developed denuder sampling system for the determination of aromatic hydrocarbons in air are presented. Denuders of different lengths were tested in laboratory experiments by means of dynamically generated test gases at conditions similar to those at workplaces. Uptake rates, adsorption capacities as well as desorption efficiencies were measured at different sampling parameters. The influence of air humidity on the adsorption behaviour was determined. Finally, the suitability of the system for outdoor air investigations was checked. The denuders were very suitable for the determination of aromatic hydrocarbons in workplace air; the general feasibility to investigate outdoor air samples was demonstrated.  相似文献   

13.
A two-dimensional gas chromatography/combustion/isotope ratio mass spectrometry (2D-GC/C/IRMS) system was developed for stable carbon isotopic measurements of C(2)-C(5) non-methane hydrocarbons (NMHCs) in biomass burning smoke. The 2D-GC/C/IRMS system successfully improved the accuracy and precision for the measurements of C(4) and C(5) saturated compounds in a smoke sample by selective injection of target compounds into a combustion furnace and consequently allowed us to provide complete baseline separation for all individual NMHCs. The analytical precision of the delta(13)C of each compound was better than 0.5 per thousand for more than 500 pmolC injections and 2.1 per thousand for 30 pmolC injections, which was estimated from replicate analysis of standard gases. This system was applied to the analysis of NMHCs in smoke samples collected from laboratory biomass burning experiments. From the combustion of three fuel materials (rice straw, pine wood, and maize), we found that the isotopic fractionation between fuel material and individual NMHCs is almost independent of the fuel material and thus the delta(13)C values of the fuel materials are reflected in delta(13)C values of most of NMHCs. However, only i-butane emitted from maize combustion showed anomalous (13)C-depletion of -11.6 per thousand relative to the delta(13)C value of maize. Such a large (13)C depletion suggests the specific isotopic fractionation process which is attributed to the maize combustion itself or the chemical properties of i-butane during production from a radical recombination reaction.  相似文献   

14.
The in-vivo monitoring of volatile organic compound (VOC) emissions is a potential non-invasive tool in plant protection, especially in greenhouse cultivation. We studied VOC production from above and belowground organs of the eight parents of the Multi-Parent Advanced Generation Intercross population (MAGIC) tomato population, which exhibits a high genetic variability, in order to obtain more insight into the variability of constitutive VOC emissions from tomato plants under stress-free conditions. Foliage emissions were composed of terpenes, the majority of which were also stored in the leaves. Foliage emissions were very low, partly light-dependent, and differed significantly among genotypes, both in quantity and quality. Soil with roots emitted VOCs at similar, though more variable, rates than foliage. Soil emissions were characterized by terpenes, oxygenated alkanes, and alkenes and phenolic compounds, only a few of which were found in root extracts at low concentrations. Correlation analyses revealed that several VOCs emitted from foliage or soil are jointly regulated and that above and belowground sources are partially interconnected. With respect to VOC monitoring in tomato crops, our results underline that genetic variability, light-dependent de-novo synthesis, and belowground sources are factors to be considered for successful use in crop monitoring.  相似文献   

15.
We report vibrational sum frequency generation (SFG) spectra of glass surfaces functionalized with 1-pentene, 2-hexene, cyclopentene, cyclohexene, and a menthenol derivative. The heterogeneous reactions of ozone with hydrocarbons covalently linked to oxide surfaces serve as models for studying heterogeneous oxidation of biogenic terpenes adsorbed to mineral aerosol surfaces commonly found in the troposphere. Vibrational SFG is also used to track the C=C double bond oxidation reactions initiated by ozone in real time and to characterize the surface-bound product species. Combined with contact angle measurements carried out before and after ozonolysis, the kinetic and spectroscopic studies presented here suggest reaction pathways involving vibrationally hot Criegee intermediates that compete with pathways that involve thermalized surface species. Kinetic measurements suggest that the rate limiting step in the heterogeneous C=C double bond oxidation reactions is likely to be the formation of the primary ozonide. From the determination of the reactive uptake coefficients, we find that ozone molecules undergo between 100 and 10000 unsuccessful collisions with C=C double bonds before the reaction occurs. The magnitude of the reactive uptake coefficients for the cyclic and linear olefins studied here does not follow the corresponding gas-phase reactivities but rather correlates with the accessibility of the C=C double bonds at the surface.  相似文献   

16.
Gasoline evaporation is an important anthropogenic source of atmospheric volatile organic compounds (VOCs). Total OH reactivity for gasoline vapor was measured from 4 kinds of gasoline for the first time by comparative reactivity method (CRM) using proton transfer reaction mass spectrometer (PTR-MS). Compositions of 56 PAMS (photochemical assessment monitoring station) nonmethane hydrocarbons (NMHCs) were measured for both liquid and headspace of gasoline. We found high abundance of alkenes and aromatics in gasoline. The calculated OH reactivity derived from quantified NMHCs speciation accounted for only 57±4% of total reactivity obtained from CRM method. N-Alkenes, only 6 wt% in liquid gasoline, contributed to 70% of calculated reactivity. We assume that the undetected branched alkenes are the possible reason for the missing reactivity. Wesuggest that the priority of gasoline quality improvement is to reduce alkenes content in gasoline in term of reactivity-based control.  相似文献   

17.
This article reviews developments in the sampling and analysis of volatile organic compounds (VOCs) in ambient air since the 1970s, particularly in the field of environmental monitoring. Global monitoring of biogenic and anthropogenic VOC emissions is briefly described. Approaches used for environmental monitoring of VOCs and industrial hygiene VOC exposure assessments are compared. The historical development of the sampling and analytical methods used is discussed, and the relative advantages and disadvantages of sorbent and canister methods are identified. Overall, there is considerable variability in the reliability of VOC estimates and inventories. In general, canister methods provide superior precision and accuracy and are particulary useful for the analysis of complex mixtures of VOCs. Details of canister methods are reviewed in a companion paper. C. C. Austin is an Invited Scientist of the National Research Council of Canada.  相似文献   

18.
Based on the geochemical studies of natural gases in the past ten years in China, the authors have proposed a new model for their genesis--multi-source overlap, multi-stage continuity, main source-controlling type and nomenclature by the main stage.Multi-source refers to a diversity of material sources involved in the formation of natural gases, including abiogenic and biogenic material sources. In regard to biogenic sources, either oil-generating or coal-generating organic matter would produce gaseous hydrocarbon reservoirs of commercial importance. Generally, natural gases originating from these sources can overlap to form gas reservoirs. Under specific circumstances mantle-source abiogenic gases could overlap biogenic gases to form gas reservoirs. In nature, natural gases predominated by gaseous hydrocarbons may be formed from a single end-member source. However, multi-source overlap is more typical of the genesis of natural gases.  相似文献   

19.
The energies of the highest-occupied molecular orbitals (HOMOs) are known to be excellent predictors of the reactivities of biogenic hydrocarbons, such as terpenes, with reactive atmospheric oxidants including O3, OH, and NO3. Structure–Activity Relationships (SARs) have also been effectively employed in such studies and related to HOMO energies and lowest ionization energies (ionization potentials). This study employs density function theory (DFT), at the B3LYP/6-31G** level, to predict vertical ionization energies (IPv) for a structurally diverse group of sesquiterpenes, each of which has been reported in air samples collected in the lower troposphere. The availability of published UV photoelectron spectra for nine sesquiterpenes permits comparison of experimental and theoretical vertical ionization energy data. The experimental and theoretical data show a good correlation (average discrepancy ± 0.07 eV). This enables predictions of reactivities for sesquiterpenes whose tropospheric lifetimes may last only a few hours before their transformations into secondary organic aerosols (SOA) close to their emission sources.  相似文献   

20.
The need to monitor biogenic amines levels is essential for many areas of the food industry for two main reasons: the caustic nature and potential toxicity of these amines, and the potential to use amine levels as markers for freshness and quality in foodstuffs. Optimised analysis conditions used for the determination of biogenic amines derivatised with 2-napthyloxycarbonyl chloride has been applied to different pet food samples to assess the effectiveness of this method for complex sample matrices. Further to this, the use of high-resolution mass spectrometry has enabled the previously unconfirmed derivatised form of seven biogenic amines to be established. The derivatised forms identified include as mono substituted (tryptamine and histamine), bisubstituted (putrescine, cadaverine and tyramine), trisubstituted (spermidine) and tetrasubstituted (spermine). The methodology of biogenic amine determination was performed successfully to a range of pet food products highlighting the applicability to a variety of complex sample matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号