首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(1)H spin-lattice relaxation rates in glycerol solutions of selected nitroxide radicals at temperatures between 200 K and 400 K were measured at 15 MHz and 25 MHz. The frequency and temperature conditions were chosen in such a way that the relaxation rates go through their maximum values and are affected by neither the electron spin relaxation nor the electron-nitrogen nucleus hyperfine coupling, so that the focus could be put on the mechanisms of motion. By comparison with (1)H spin-lattice relaxation results for pure glycerol, it has been demonstrated that the inter-molecular electron spin-proton spin dipole-dipole interactions are affected not only by relative translational motion of the solvent and solute molecules, but also by their rotational dynamics as the interacting spins are displaced from the molecular centers; the eccentricity effects are usually not taken into account. The (1)H relaxation data have been decomposed into translational and rotational contributions and their relative importance as a function of frequency and temperature discussed in detail. It has been demonstrated that neglecting the rotational effects on the inter-molecular interactions leads to non-realistic conclusions regarding the translational dynamics of the paramagnetic molecules.  相似文献   

2.
We use (2)H NMR spectroscopy to investigate the rotational motion of glycerol molecules in matrices provided by the connective tissue proteins elastin and collagen. Analyzing spin-lattice relaxation, line-shape properties, and stimulated-echo decays, we determine the rates and geometries of the motion as a function of temperature and composition. It is found that embedding glycerol in an elastin matrix leads to a mild slowdown of glycerol reorientation at low temperatures and glycerol concentrations, while the effect vanishes at ambient temperatures or high solvent content. Furthermore, it is observed that the nonexponential character of the rotational correlation functions is much more prominent in the elastin matrix than in the bulk liquid. Results from spin-lattice relaxation and line shape measurements indicate that, in the mixed systems, the strong nonexponentiality is in large part due to the existence of distributions of correlation times, which are broader on the long-time flank and, hence, more symmetric than in the neat system. Stimulated-echo analysis of slow glycerol dynamics reveals that, when elastin is added, the mechanism for the reorientation crosses over from small-angle jump dynamics to large-angle jump dynamics and the geometry of the motion changes from isotropic to anisotropic. The results are discussed against the background of present and previous findings for glycerol and water dynamics in various protein matrices and compared with observations for other dynamically highly asymmetric mixtures so as to ascertain in which way the viscous freezing of a fast component in the matrix of a slow component differs from the glassy slowdown in neat supercooled liquids.  相似文献   

3.
(1)H relaxation dispersion of decalin and glycerol solutions of nitroxide radicals, 4-oxo-TEMPO-d(16)-(15)N and 4-oxo-TEMPO-d(16)-(14)N was measured in the frequency range of 10 kHz-20 MHz (for (1)H) using STELAR Field Cycling spectrometer. The purpose of the studies is to reveal how the spin dynamics of the free electron of the nitroxide radical affects the proton spin relaxation of the solvent molecules, depending on dynamical properties of the solvent. Combining the results for both solvents, the range of translational diffusion coefficients, 10(-9)-10(-11) m(2)∕s, was covered (these values refer to the relative diffusion of the solvent and solute molecules). The data were analyzed in terms of relaxation formulas including the isotropic part of the electron spin - nitrogen spin hyperfine coupling (for the case of (14)N and (15)N) and therefore valid for an arbitrary magnetic field. The influence of the hyperfine coupling on (1)H relaxation of solvent molecules depending on frequency and time-scale of the translational dynamics was discussed in detail. Special attention was given to the effect of isotope substitution ((14)N∕(15)N). In parallel, the influence of rotational dynamics on the inter-molecular (radical - solvent) electron spin - proton spin dipole-dipole coupling (which is the relaxation mechanism of solvent protons) was investigated. The rotational dynamics is of importance as the interacting spins are not placed in the molecular centers. It was demonstrated that the role of the isotropic hyperfine coupling increases for slower dynamics, but it is of importance already in the fast motion range (10(-9)m(2)∕s). The isotope effects is small, however clearly visible; the (1)H relaxation rate for the case of (15)N is larger (in the range of lower frequencies) than for (14)N. It was shown that when the diffusion coefficient decreases below 5 × 10(-11) m(2)∕s electron spin relaxation becomes of importance and its role becomes progressively more significant when the dynamics slows done. As far as the influence of the rotational dynamics is concerned, it was show that this process is of importance not only in the range of higher frequencies (like for diamagnetic solutions) but also at low and intermediate frequencies.  相似文献   

4.
A previous study of C70 in deuterated chlorobenzene generated evidence suggesting C70 was experiencing unique reorientational behavior at given temperatures. The present study explores the possibility that this behavior is present across other solvents. The 13C spin-lattice relaxation rates for four carbon resonances in C70 were analyzed in benzene-d6, chlorobenzene-d5, and o-dichlorobenzene-d4, and as a function of temperature, to probe the reorientational dynamics of this fullerene. Anisotropic behavior was observed at the lowest (283 K) and highest temperatures (323 K), isotropic diffusion was seen between 293 and 303 K, and quasi-isotropic at 313 K. When anisotropic motion was present, diffusion about the figure axis was seen to be higher than diffusion of the figure axis. Experimentally obtained diffusion coefficients generated reorientational correlation times that were in excellent agreement with experimental values. Theoretical predictions generated by a modified Gierer-Wirtz model provided acceptable predictions of the diffusion constants; with DX usually being more closely reproduced and DZ values generally being underestimated. Overall, the results indicate that the factors affecting rotational behavior are complex and that multiple solvent factors are necessary to characterize the overall motion of C70 in these solvents. Although a solvent's viscosity is normally sufficient to characterize the tumbling motion, the spinning motion is less sensitive to solvent viscosity but more responsive to solvent structure. The balance and collective influence of these factors ultimately determines the overall rotational behavior.  相似文献   

5.
The weakly bending rod (WBR) model of double-stranded DNA (dsDNA) is adapted to analyze the internal dynamics of dsDNA as observed in electron paramagnetic resonance (EPR) measurements of the spin-lattice relaxation rate, R(1e), for spin probes rigidly attached to nucleic acid-bases. The WBR theory developed in this work models dsDNA base-pairs as diffusing rigid cylindrical discs connected by bending and twisting springs whose elastic force constants are kappa and alpha, respectively. Angular correlation functions for both rotational displacement and velocity are developed in detail so as to compute values for R(1e) due to four relaxation mechanisms: the chemical shift anisotropy (CSA), the electron-nuclear dipolar (END), the spin rotation (SR), and the generalized spin diffusion (GSD) relaxation processes. Measured spin-lattice relaxation rates in dsDNA under 50 bp in length are much faster than those calculated for the same DNAs modeled as rigid rods. The simplest way to account for this difference is by allowing for internal flexibility in models of DNA. Because of this discrepancy, we derive expressions for the spectral densities due to CSA, END, and SR mechanisms directly from a weakly bending rod model for DNA. Special emphasis in this development is given to the SR mechanism because of the lack of such detail in previous treatments. The theory developed in this paper provides a framework for computing relaxation rates from the WBR model to compare with magnetic resonance relaxation data and to ascertain the twisting and bending force constants that characterize DNA.  相似文献   

6.
Direct calculation of electron spin relaxation and EPR lineshapes, based on Brownian dynamics simulation techniques and the stochastic Liouville equation approach (SLE-L) [Mol. Phys., 2004, 102, 1085-1093], is here generalized to high spin systems with spin quantum number S = 3/2, 2, 5/2, 3 and 7/2. A direct calculation method is demonstrated for electron spin-spin and spin-lattice relaxation, S-, X- and Q-band EPR-lineshapes and paramagnetic enhanced water proton T(1)- NMRD profiles. The main relaxation mechanism for the electron spin system is a stochastic second rank zero field splitting (ZFS). Brownian dynamics simulation techniques are used in describing a fluctuating ZFS interaction which comprises two parts namely the "permanent" part which is modulated by isotropic reorientation diffusion, and the transient part which is modulated by fast local distortion, which is also modelled by the isotropic rotation diffusion model. The SLE-L approach present is applicable both in the perturbation (Redfield) regime as well as outside the perturbation regime, in the so called slow motion regime.  相似文献   

7.
Nuclear magnetic spin-lattice relaxation experiments have been performed in partially filled porous glasses with wetting and nonwetting fluids. The frequency dependence of the spin-lattice relaxation rate in Vycor (4 nm pores) and VitraPOR #5 (1 microm pores) silica glasses was studied as a function of the filling degree with the aid of field-cycling NMR relaxometry. The species of primary interest were water ("polar") and cyclohexane ("nonpolar"). Spin-lattice relaxation was examined in the frequency range from 1 kHz to 400 MHz with the aid of a field-cycling NMR relaxometer and an ordinary 400 MHz NMR spectrometer. Three different mobility states of the fluid molecules are distinguished: The adsorbed state at the pore walls, the bulklike liquid phase, and the vapor phase. The adsorbate spin-lattice relaxation rate is dominated by the "reorientation mediated by translational displacements" (RMTD) mechanism taking place at the adsorbate/matrix interface at frequencies low enough to neglect rotational diffusion of the molecules. The experimental data are analyzed in terms of molecular exchange between the different mobility states. Judged from the dependence of the spin-lattice relaxation rates on the filling degree, limits for slow and fast exchange (relative to the RMTD time scale) can be distinguished and identified. It is concluded that water always shows the features of slow exchange irrespective of the investigated pore sizes and filling degrees. This is in contrast to cyclohexane which is subject to slow exchange in micrometer pores, whereas fast exchange occurs in nanoscopic pores. The latter case implies that the vapor phase contributes to molecular dynamics in this case at low filling degrees while it is negligible otherwise.  相似文献   

8.
Abstract

The solid state polymorphism of liquid crystalline MBBA was investigated by temperature dependent NMR spin-lattice relaxation time measurements. The sensitivity of the method could be utilized because the correlation time of the measurement is in the correlation time region of molecular motion. Motional correlation time and activation energy values were determined and the results show some interesting changes between the different solid phases. Non-trivial variation in the end-chain rotational motion in two crystalline phases has been observed. Conclusions were drawn on the relationship between rotational molecular dynamics, intermolecular order and phase transitions.  相似文献   

9.
10.
Proton magnetic resonance absorption and spin-lattice relaxation measurements have been carried out for cyclopropane clathrate deuterate from 77 to 290 K together with spin—lattice relaxation measurements on solid cyclopropane from 90 to 146 K. The absorption measurement for the type I structure deuterate indicates the presence of an isotropic rotation of the cyclopropane molecule from about 230 K, while in the type II structure deuterate isotropic rotation of the enclathrated cyclopropane is present over all of the range of stability of the clathrate (~250 to 278 K). The spin-lattice relaxation measurements give an activation energy of 0.83 ± 0.03 kcal mole?1 for the barrier to reorientation (not assigned) of the cyclopropane molecules inside the clathrate deuterate cavities. In solid cyclopropane the barrier associated with the threefold axis rotation is found to be 4.8 ± 0.2 kcal mole?1.  相似文献   

11.
Proton nuclear spin relaxation has been for the first time extensively used for a structural and dynamical study of low-molecular-weight organogels. The gelator in the present study is a modified phenylalanine amino acid bearing a naphthalimide moiety. From T(1) (spin-lattice relaxation time in the laboratory frame) and T(1ρ) (spin-lattice relaxation time in the rotating frame) measurements, it is shown that the visible gelator NMR spectrum below the liquid-gel transition temperature corresponds to a so-called isotropic compartment, where gelator molecules behave as in a liquid phase but exchange rapidly with the molecules constituting the gel structure. This feature allows one to derive, from accessible parameters, information about the gel itself. Nuclear Overhauser effect spectroscopy (NOESY) experiments have been exploited in view of determining not only cross-relaxation rates but also specific longitudinal rates. The whole set of relaxation parameters (at 25 °C) leads to a correlation time of 5 ns for gelator molecules within the gel structure and 150 ps for gelator molecules in the isotropic phase. This confirms, on one hand, the flexibility of the organogel fibers and, on the other hand, the likely presence of clusters in the isotropic phase. Concerning cross-relaxation rates, a thorough theoretical investigation in multispin systems of direct and relayed correlations in a NOESY spectrum allows one to make conclusions about contacts (around 2-3 ?) not only between naphtalimide moieties of different gelator molecules but also between the phenyl ring and the naphtalimide moiety again of different gelator molecules. As a result, not only is the head-to-tail structure of amino acid columns confirmed but also the entangling of nearby columns by the naphthalimide moieties is demonstrated.  相似文献   

12.
The first translational self-diffusion NMR measurements in the isotropic phase of banana-shaped liquid crystals are reported. In this paper, two banana-shaped mesogens, having a similar molecular structure and showing a nematic phase, have been investigated by means of translational self-diffusion NMR, (2)H NMR spin-spin and (1)H NMR spin-lattice relaxation measurements in the isotropic phase. While (1)H diffusion and (2)H relaxation times reveal a peculiar slow dynamic behaviour of banana-shaped mesogens compared with calamitic mesogens, the (1)H relaxation times seem to be affected by fast dynamics only. The origin of these dynamic features is discussed in terms of overall and internal molecular motions, in the frame of recent speculations concerning the formation of molecular clusters or aggregates in the isotropic phase of banana-shaped liquid crystals.  相似文献   

13.
A comparative study of anisotropic relaxation in two-pulse primary and three-pulse stimulated electron spin echo decays provides a direct way to distinguish fast (correlation time tau(c)<10(-6) s) and slow (tau(c)>10(-6) s) motions. Anisotropic relaxation is detected as a difference of the decay rates for different resonance field positions in anisotropic electron paramagnetic resonance spectra. For fast motion anisotropic relaxation influences the primary echo decay and does not influence the stimulated echo decay. For slow motion it is seen in both two-pulse echo and three-pulse stimulated echo decays. For nitroxide spin probes dissolved in glassy glycerol only fast motion was found below 200 K. Increase of temperature above 200 K results in the appearance of slow motion. Its amplitude increases rapidly with temperature increase. While in glycerol glass slow motion appears above glass transition temperature T(g), in ethanol glass it is observable below T(g). The scenario of motional dynamics in glasses is proposed which involves the broadening of the correlation time distribution with increasing temperature.  相似文献   

14.
We discuss the nuclear spin relaxation resulting from molecular translational diffusion of a liquid crystal in the isotropic phase confined to spherical microcavities. The relaxation is induced by the time modulation of spin interactions as molecules diffuse between the ordered surface layer into the isotropic interior volume and back. The calculated spin-lattice relaxation rate T(1) (-1) shows three distinct dispersion regimes: a plateau at the lowest frequencies, practically independent of the size of the cavity, an intermediate power-law dispersion regime with an exponent between -0.7 and -1, depending on the spatial profile of the order parameter and cavity radius, and at frequencies above 1 MHz a strong dispersion tending toward the quadratic dependence of the relaxation rate on the Larmor frequency in the high-frequency limit. The pretransitional increase in T(1) (-1) depends drastically on the Larmor frequency. The frequency and temperature dependences of T(1) (-1) yield not only information on the magnitude of the surface order parameter, but also on its spatial profile, revealing the type of liquid-crystal-substrate interactions. Apart from thermotropic liquid crystals in the isotropic phase, this analysis can be also applied to other fluids in porous media.  相似文献   

15.
Solutions of poly(p-phenylene terephthalamide) in fuming sulfuric acid were characterized by 13C NMR spectroscopy and solution viscosity measurements over the 2–28% w/w concentration range. The spectra showed the presence of two distinct amide carbonyl resonances at low concentration, tentatively assigned to cis and trans conformations. As the concentration increased, additional carbonyl lines were observed along with significant broadening. Peak area measurements showed that only the polymer molecules in the isotropic environments contributed to the 13C NMR spectra and a considerable amount of the polymer remained in the isotropic phase at concentrations previously considered to consist of polymer in highly anisotropic regions. Spin-lattice relaxation times were measured at six concentrations using the inversion recovery method. The aromatic carbons relaxed at a much faster rate (ca. 0.10 s) than the carbonyls (ca. 0.45 s), but the relaxation rates for both carbons were essentially constant over the concentration range, indicating that the observed isotropic phase is not affected by changes in the macroscopic solution behavior so as to alter spin-lattice relaxation mechanisms.  相似文献   

16.
Using double-resonance conditions, in which the Larmor frequency of a spin-1/2 nucleus is matched to one of the nuclear quadrupole resonance frequencies of a spin-1 nucleus, the authors demonstrate increased cross relaxation between the two nuclear spin species. They calculate the cross-relaxation rate using the motionally averaged heterogeneous dipole Hamiltonian as a perturbation to the combined quadrupole and Zeeman Hamiltonians. Using this cross-relaxation rate, in addition to hydrogen and nitrogen autorelaxation rates, expressions governing spin-1/2 and spin-1 spin-lattice relaxation are determined. With ammonium nitrate, containing nitrogen (spin-1) and hydrogen (spin-1/2), increased nitrogen signal and spin-lattice relaxation are demonstrated, using fields less than 120 G. The cross-relaxation rate is also measured and an overall signal/noise improvement by a factor of 2.3+/-0.1 is attained.  相似文献   

17.
NMR spectroscopy has been used to characterize poly(p-phenylene terephthalamide) in the solid state and in solution in sulfuric acid. Solid-state 13C NMR spectra illustrate that the chain structure is highly ordered in the solid state and is of lower symmetry than in solution. Solid-state 13C and 1H NMR results show that only very limited motion takes place over the temperature range of ?170 to +200°C. High-resolution NMR spectra can be observed only in very dilute isotropic solutions because it is the overall rotational motion of the polymer, not segmental motion, that averages the nuclear spin interactions to their isotropic values. These results demonstrate that previous solution NMR studies that were interpreted as reflecting the presence of isotropic and anisotropic high-molecular-weight polymer phases over a wide range of concentrations actually are representative of polymer degradation.  相似文献   

18.
Proton and carbon-13 spin–lattice relaxation times are reported for 10-wt % solutions of tetramethyl bisphenol-A polycarbonate. The relaxation times for both nuclei were measured at two Larmor frequencies and as a function of temperature. These relaxation times are interpreted in terms of three motions: segmental motion, restricted rotational diffusion, and backbone methyl-group rotation. The Hall–Helfand correlation function is used to describe the segmental motion. Internal rotation is described by the usual Woessner approach and restricted anisotropic rotational diffusion by the Gronski approach. As demonstrated by its higher activation energy, correlated segmental motion appears to be slower than the unsubstituted polycarbonate of BPA. In addition, the single-transition processes seem to be still less important than correlated backbone transitions. Phenylene-group rotation is described in terms of restricted rotational diffusion instead of complete anisotropic rotation. The time scale for backbone methyl-group rotation is comparable to that in BPA, a fact indicative of weaker cooperativity between this motion and the other motions. Rotation of the methyl group attached to the phenylene ring is too fast to significantly contribute to relaxation except by partially averaging the dipole–dipole interactions. The higher activation energies for segmental motion observed in solution for this methyl-substituted polycarbonate relative to the unsubstituted polycarbonate parallel a significant increase in the glass transition temperature observed for the substituted material. The restricted pheylene-group rotation in solution is also parallelled by a large upward shift of the low-temperature loss peak in the glassy polymer.  相似文献   

19.
Carbon-13 spin-lattice relaxation time measurements have been performed at two experimental frequencies on a series of amorphous polymers in the bulk state at temperatures well above the glass-transition temperatures and in solution. The high experimental values of the T1 minimum as a function of temperature cannot be accounted for only by the specific orientation autocorrelation functions developed for polymers. They indicate the existence of an additional fast anisotropic motion, which we have assigned to librations of limited but significant extent of the internuclear CH vectors about their rest position. Moreover, in most cases, the temperature dependence of the segmental motions proves that they are involved in the glass-rubber transition phenomena.  相似文献   

20.
The unusual behavior of lattice dynamics of L-alanine has been assigned to intermolecular dynamics and localization of vibrational energy. Recent heat capacity and Pulsed-EPR measurements support presence of thermally activated dynamic orientational disorder in the L-alanine lattice below 20 K. In the present study, the additional evidence for possible thermally activated disordered behavior of L-alanine lattice have been obtained by investigating dependences of longitudinal relaxation time of first stable L-alanine radical, SAR1, on sample cooling rates for the same low temperature interval. The obtained relaxation time by Pulsed-EPR shows clear dependence on cooling rates and this behavior can be explained within two types of suggested spin-lattice relaxation mechanisms for the paramagnetic centers in the hydrogen-bonded organic crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号