首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用高温垂直Bridgman法,以ZnTe(5N)、Mg(5N)和Te(7N)为初始原料,在高温下成功生长出了尺寸为φ15mm×50 mm的Zn1-xMgxTe晶体.分别采用X射线衍射、紫外可见分光光度计和红外光谱仪研究了晶体的结构及光学性质,通过PL谱和化学腐蚀的方法分析了晶体的结晶质量.结果表明:所生长的晶体具有立方相结构,晶格常数为0.61585 nm,略大于ZnTe晶格常数,晶锭中质量最好部分的晶片红外和紫外透过率接近60;,室温下其禁带宽度约为2.37 eV.77 K温度下,PL谱中存在A和B两个主要的发光带,位错腐蚀坑密度在105 cm-2数量级.  相似文献   

2.
采用Bridgman法生长了二氧化碲(TeO2)晶体,运用光学显微镜、电子衍射光谱、化学腐蚀等方法分析了该方法生长TeO2晶体内部的缺陷.初步讨论了散射点、微裂纹、气泡和黑点、条纹以及腐蚀坑等微缺陷的形成机理.结果表明:晶体内部的散射点来自于原料中杂质,条纹主要是由于晶体内应力引起,晶体内的气泡和黑点和晶体生长的温度密切相关,并就如何减少这些微缺陷进行了初步探讨.  相似文献   

3.
四方晶系晶体的Bridgman法生长的稳态数值模拟   总被引:2,自引:0,他引:2  
本文对四方晶系晶体的Bridgman法生长进行了稳态数值模拟.当熔体的导热系数位于晶体横向导热系数和纵向导热系数中间的一小段时,将产生\"W\"形固液界面.通过比较,指出不同导热系数组合时晶体生长的难易.当熔体的导热系数位于晶体横向导热系数和纵向导热系数中间的一小段时,界面平坦,容易长出较好质量的晶体.对中、低级晶系的生长,晶体横向导热系数应大于纵向导热系数.  相似文献   

4.
本文报导了一种AgGaSe2生长工艺,可有效地从熔体中排出非凝聚气相杂质,结合一项改进的坩埚镀碳技术,提高了生长优质AgGaSe2单晶的成品率.文中还给出了晶体样品的红外观测,红外透过光谱和光电流谱,以及可调谐TEA CO2激光倍频的实验结果.  相似文献   

5.
GdCOB晶体的坩埚下降法生长   总被引:1,自引:1,他引:0  
本文报道了非线性光学晶体Ca4GdO(BO3)3(GdCOB)的垂直Bridgman法生长.已获得直径25mm的高质量单晶.生长界面处的纵向温度梯度维持在30~40℃/cm,生长速度0.2~0.8mm/h.GdCOB晶体为二维成核的层状生长机制,易出现(111)及(20)解理面.讨论了影响生长的因素.保证原料配比准确和混料充分,减小温度波动和测温误差等是成功生长GdCOB晶体的重要因素.  相似文献   

6.
采用晶体生长数值模拟软件CrysMAS对泡生法生长蓝宝石晶体过程的温场进行了研究,利用数值模拟结果来调节晶体生长实验的生长速率,成功的长出了质量为91.3 kg的高质量蓝宝石晶体,并将模拟结果与实验结果进行了对比.结果表明:数值模拟结果能很好的反映出晶体在不同时刻的生长状态.晶体在生长初期应保持较低的生长速度,在等径生长阶段,晶体的最大生长速度应低于1002 g/h.  相似文献   

7.
运用数值模拟技术改进VGF法生长GaAs晶体   总被引:1,自引:1,他引:0  
在VGF法生长GaAs晶体的过程中固液界面凹向晶体,很容易在坩埚圆锥面处生长多晶.本文采用专业晶体生长模拟软件CrysVUn对实验温场进行了计算机模拟并提出改进方案,把底加热器取消并在坩埚底部加入氦气冷源,底部结构类似于热交换法系统.这样改变热场结构,得到凸向熔体的固液界面.  相似文献   

8.
垂直Bridgman法生长Cd1-XMnxTe晶体的缺陷研究   总被引:1,自引:0,他引:1  
本文采用垂直布里奇曼(Bridgman)法生长了尺寸为Φ30 mm×130mm的Cd1-xMnxTe晶体,利用Nakagawa腐蚀液显示了晶体的位错、Te夹杂相和孪晶缺陷,并采用傅立叶变换红外光谱仪研究了晶体的红外透过率与晶体缺陷之间的关系.结果表明:生长态Cd1-xMnxTe晶体的位错密度为104~105 cm-2,Te夹杂相密度为103~104cm-2,晶体中的孪晶主要为共格孪晶,孪晶面为[111]面,且平行于晶体生长方向.在入射光波数4000~500 cm-1范围,晶体的红外透过率为36.7;~55.3;,红外透过率越大,表明晶体的位错和Te夹杂相密度越低,晶体对该波长范围的红外光表现为晶格吸收和自由载流子吸收.  相似文献   

9.
采用有限元法,对泡生法生长蓝宝石晶体不同生长阶段固液界面的形状和温度梯度进行模拟计算,探讨分析了生长速率对放肩、等径阶段蓝宝石生长的影响.结果表明:固液界面凸出度在放肩阶段较大,在等径阶段凸出度相对较小,固液界面温度梯度随着晶体生长不断减小.在合理速率范围内,放肩阶段0~2 mm/h,速率对固液界面的影响很小,等径阶段2~5 mm/h,速率对固液界面的影响越来越大,固液界面温度梯度和形变均随速率的增大而减小.利用模拟结果,调节实际晶体生长工艺参数,成功长出80 kg的大尺寸高质量蓝宝石晶体.  相似文献   

10.
垂直Bridgman法生长半磁性半导体Cd1—xMnxTe晶体   总被引:1,自引:1,他引:0  
  相似文献   

11.
    
In this work the momentum and heat transfer on a Bridgman system for the growth of GaSb has been studied. The main objective was to obtain some information about the role of the different processes like conduction, radiation and convective effects both in the melted material and the surrounding environment. These simulations are based on a 2D axi‐symmetrical model using a finite element method based code. The simulations have been carried out both in steady and transient states. It has been demonstrated that the consideration of a moving environment is important in the distribution of temperatures. The effects of the variations of thermal conductivities and emisivities on the thermal and velocity fields have been investigated. The results show that the key parameters are the thermal conductivities of the different materials present in the system, which produce significant changes in the convective flows inside the melt.  相似文献   

12.
    
High‐quality GaSb and Ga1‐xInxSb (x = 0.14) crystals were grown via the vertical Bridgman (VB) method. The lattice structure, morphology, optical, and transport properties of the GaSb and GaInSb crystals were characterized. The influence of the indium doping on the physical properties of the GaSb crystal was also investigated. The results demonstrate that the indium doping maintains the zinc‐blende lattice structure of the GaSb crystal. The segregation of indium is very low, with the radial and axial concentration variation of 2.32% and 4.84%, respectively. The indium doping significantly reduces the dislocation density down to 1.275 × 103 cm−2. The band gap of the indium‐doped GaSb is reduced to 0.549 eV, consistent with the decreased infrared transmission measured by FTIR. Surprisingly, the indium doping changes the majority carrier type of the crystal, from p‐type in the pristine GaSb crystal to n‐type in the GaInSb crystal. Compared to the GaSb crystal, the GaInSb crystal shows enhanced transport properties, with carrier mobility increased to 2.512 × 103 cm2/(V•s) and resistivity reduced to 0.521 × 10−3 ohm•cm.  相似文献   

13.
    
A solution growth process combined of vertical Bridgman and vertical gradient freeze in a metal free Si‐C melt at growth temperatures of 2300 °C is developed. The influence of the growth parameters for different growth steps and of the surface polarity of the seed is investigated. The layers are evaluated by Raman spectroscopy, scanning electron microscopy and optical profilometry. The growth of high quality SiC layers with a diameter of 30 mm and a layer thickness up to 200 µm is achieved.  相似文献   

14.
Ⅲ-Ⅶ族InSe晶体是一种非常重要的化合物半导体材料,在高性能纳米电子器件、红外光探测、光电器件及柔性电子等领域有广泛应用。本文简要介绍了In-Se相图的发展历程,InSe具有非一致熔融特性,可通过包晶反应从准化学计量比或非化学计量比溶液中析晶获得,其中In/Se摩尔比对InSe转化率有重要影响。迄今,垂直布里奇曼法、提拉法、水平梯度凝固法、低温液相法及气相输运法等多种技术被成功用于制备InSe晶体。为全面了解InSe晶体生长的历史和现状,本文从工艺原理、技术要点、晶体生长结果等方面将国内外相关工作进行了梳理,并对各种方法的优缺点进行了比较。研究分析表明垂直布里奇曼法因对设备要求简单,操作简易,现已成为制备高质量大尺寸InSe晶体的主流技术;水平梯度凝固法则在ε型InSe晶体生长方面颇具特色,未来可在新材料性能研究与应用探索上与垂直布里奇曼法形成一定补充。  相似文献   

15.
    
Bi12SiO20 single crystals have been grown successfully by vertical Bridgman technique. During the crystal growth process, different axial vibration amplitudes of 50 μm, 70 μm and 100 μm were applied with the same vibration frequency of 50 Hz. The effect of different axial vibration amplitudes on quality of the as‐grown Bi12SiO20 single crystals was discussed. The crystals have been characterized by X‐ray rocking curve optical and absorption spectrum. The experimental results reveal that the axial vibration amplitude has a pronounced effect on quality of the as‐grown Bi12SiO20 single crystals. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
采用坩埚下降法生长了新型光折变晶体Bi2TeO5,通过优化生长工艺,获得了直径25mm、长度50mm的Bi2TeO5晶体.研究了晶体开裂和变色等缺陷,测试了晶体的光学性能.测得Bi2TeO5晶体的三阶非线性光学响应时间为8.5ps,三阶非线性光学系数为7.4×10-10.  相似文献   

17.
垂直布里奇曼法生长铜单晶体的研究   总被引:1,自引:1,他引:0  
Cu单晶在中子和X射线单色器及激光核聚变靶材等领域有重要应用前景.本文采用自制的硅钼棒单晶生长炉和特制的镀碳石英生长坩埚,采用垂直布里奇曼法在30 ℃/cm的温度梯度下,以10 mm/d的下降速度生长出较高质量的铜单晶体.生长的晶体经多次研磨抛光腐蚀处理后进行X射线衍射分析和金相分析,显示出(200)晶面尖锐的X射线衍射峰和规则的方形蚀坑,表明生长的晶体结构完整.  相似文献   

18.
坩埚下降法是一种重要的晶体生长技术,成功用于生长闪烁晶体锗酸铋(Bi4Ge3O12)、声光晶体氧化碲(TeO2)、压电晶体四硼酸锂(Li2B4O7)以及新型弛豫铁电晶体等材料,并实现了产业化。坩埚下降法在层状结构晶体、异型晶体、高通量生长等新材料探索中也有巨大的潜力。本文主要介绍我们团队近年来在坩埚下降法生长硒化锡(SnSe)晶体、全无机铅卤基钙钛矿晶体、高温合金、硅酸铋晶体高通量筛选等方面的研究结果。  相似文献   

19.
高质量大尺寸氟化钙晶体是深紫外光刻、空天相机等高端应用不可或缺的光学材料,同时制备高质量大尺寸晶体也是晶体生长领域的难题。本文以数值手段分别模拟了3、7和20英寸(1英寸=2.54 cm)氟化钙晶体在不同生长阶段的传热、流动及相变过程。结果表明,晶体尺寸增加大幅加强熔体流动强度,而且造成坩埚外壁散热部分的面积急剧增加,由此引发固液界面局部凹陷、径向温差增大、晶体边缘-中心温差翻转、生长界面附近的轴向温梯大幅衰减等问题。此外,本文还就大尺寸氟化钙晶体生长中的坩埚下降速率和发热体功率的优化控制策略进行了探讨。  相似文献   

20.
    
The temperature gradient within a furnace chamber and the crucible pull rate are the key control parameters for cadmium zinc telluride Bridgman single crystal growth. Their effects on the heat and mass transfer in front of the solid‐liquid interface and the solute segregation in the grown crystal were investigated with numerical modeling. With an increase of the temperature gradient, the convection intensity in the melt in front of the solid‐liquid interface increases almost proportionally to the temperature gradient. The interface concavity decreases rapidly at faster crucible pull rates, while it increases at slow pull rates. Moreover, the solute concentration gradient in the melt in front of the solid‐liquid interface decreases significantly, as does the radial solute segregation in the grown crystal. In general, a decrease of the pull rate leads to a strong decrease of the concavity of the solid‐liquid interface and of the radial solute segregation in the grown crystal, while the axial solute segregation in the grown crystal increases slightly. A combination of a low crucible pull rate with a medium temperature gradient within the furnace chamber will make the radial solute segregation of the grown crystal vanish. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号