首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 86 毫秒
1.
The action of a highfrequency electromagnetic field on a dilute suspension of spherical particles with a constant dipole moment is studied using statistical mechanics. An expression for effective viscosity is obtained. It is shown that the shear viscosity of the dilute suspension depends on the frequency, magnitude, and direction of the highfrequency electromagnetic field. Depending on the frequency of the highfrequency electromagnetic field, the rotation of the suspension particles is decelerated or accelerated, with the viscosity increasing or decreasing, respectively. It is shown that the acceleration of the suspension particles by a highfrequency electromagnetic field and, hence, the decrease in shear viscosity has a resonant nature.  相似文献   

2.
Optically actuated radio frequency microelectromechanical system (MEMS) devices are seen to self-oscillate or vibrate under illumination of sufficient strength (Aubin, Pandey, Zehnder, Rand, Craighead, Zalalutdinov, Parpia (Appl. Phys. Lett. 83, 3281–3283, 2003)). These oscillations can be frequency locked to a periodic forcing, applied through an inertial drive at the forcing frequency, or subharmonically via a parametric drive, hence providing tunability. In a previous work~(Aubin, Zalalutdinov, Alan, Reichenbach, Rand, Zehnder, Parpia, Craighead (IEEE/ASME J. Micromech. Syst. 13, 1018–1026, 2004)), this MEMS device was modeled by a three-dimensional system of coupled thermo-mechanical equations requiring experimental observations and careful finite element simulations to obtain the model parameters. The resulting system of equations is relatively computationally expensive to solve, which could impede its usage in a complex network of such resonators. In this paper, we present a simpler model that shows similar behavior to the MEMS device. We investigate the dynamics of a Mathieu–van der Pol–Duffing equation, which is forced both parametrically and nonparametrically. It is shown that the steady-state response can consist of either 1:1 frequency locking, or 2:1 subharmonic locking, or quasiperiodic motion. The system displays hysteresis when the forcing frequency is slowly varied. We use perturbations to obtain a slow flow, which is then studied using the bifurcation software package AUTO.  相似文献   

3.
Stability of the flow that arises under the action of a gravity force and streamwise finitefrequency vibrations in a nonuniformly heated inclined liquid layer is studied. By the Floquet method, linearized convection equations in the Boussinesq approximation are analyzed. Stability of the flow against planar, spiral, and threedimensional perturbations is examined. It is shown that, at finite frequencies, there are parametricinstability regions induced by planar perturbations. Depending on their amplitude and frequency, vibrations may either stabilize the unstable ground state or destabilize the liquid flow. The stability boundary for spiral perturbations is independent of vibration amplitude and frequency.  相似文献   

4.
This article is devoted to the nonlinear Schrödinger equation when the parameter ε approaches zero. All possible asymptotic behaviors of bounded solutions can be described by means of envelopes, or alternatively by adiabatic profiles. We prove that for every envelope, there exists a family of solutions reaching that asymptotic behavior, in the case of bounded intervals. We use a combination of the Nehari finite dimensional reduction together with degree theory. Our main contribution is to compute the degree of each cluster, which is a key piece of information in order to glue them.  相似文献   

5.
This paper is concerned with the existence and qualitative property of standing wave solutions for the nonlinear Schrödinger equation with E being a critical frequency in the sense that . We show that there exists a standing wave which is trapped in a neighbourhood of isolated minimum points of V and whose amplitude goes to 0 as . Moreover, depending upon the local behaviour of the potential function V(x) near the minimum points, the limiting profile of the standing-wave solutions will be shown to exhibit quite different characteristic features. This is in striking contrast with the non-critical frequency case which has been extensively studied in recent years.  相似文献   

6.
In a conventional dynamic atomic force microscopy (AFM), observing the flexural characteristics of a cantilever subjected to the tip–sample interaction is for extracting the topography and the material properties of a sample’s surface. Recently, Sahin et al. (2007) found that it is essential for understanding surface properties to design a cantilever with an eccentric tip and observe its coupled flexural–torsional characteristics. For effectively analyzing the flexural and torsional signals simultaneously, one has to find out the mode of a cantilever that the ratio of the tip gradient of flexural deformation and the tip torsional angle is comparable. Moreover, the development of an analytical model that can accurately simulate the surface-coupled dynamics of the cantilever is important for quantitative and qualitative understanding of measured results. In this paper, an analytical model of a cantilever with an eccentric tip and subjected to a nonlinear tip–sample force is established. The analytical solution is derived. It is found that the first two modes are the flexural motion and the third mode is the coupled flexural–torsional motion. Finally, the influences of several parameters on the tip angle ratio and frequency shift are investigated.  相似文献   

7.
The rigorous study of spectral stability for strong detonations was begun by Erpenbeck (Phys. Fluids 5:604–614 1962). Working with the Zeldovitch–von Neumann–D?ring (ZND) model (more precisely, Erpenbeck worked with an extension of ZND to general chemistry and thermodynamics), which assumes a finite reaction rate but ignores effects such as viscosity corresponding to second order derivatives, he used a normal mode analysis to define a stability function V(t,e){V(\tau,\epsilon)} whose zeros in ${\mathfrak{R}\tau > 0}${\mathfrak{R}\tau > 0} correspond to multidimensional perturbations of a steady detonation profile that grow exponentially in time. Later in a remarkable paper (Erpenbeck in Phys. Fluids 9:1293–1306, 1966; Stability of detonations for disturbances of small transverse wavelength, 1965) he provided strong evidence, by a combination of formal and rigorous arguments, that for certain classes of steady ZND profiles, unstable zeros of V exist for perturbations of sufficiently large transverse wavenumber e{\epsilon} , even when the von Neumann shock, regarded as a gas dynamical shock, is uniformly stable in the sense defined (nearly 20 years later) by Majda. In spite of a great deal of later numerical work devoted to computing the zeros of V(t,e){V(\tau,\epsilon)} , the paper (Erpenbeck in Phys. Fluids 9:1293–1306, 1966) remains one of the few works we know of [another is Erpenbeck (Phys. Fluids 7:684–696, 1964), which considers perturbations for which the ratio of longitudinal over transverse components approaches ∞] that presents a detailed and convincing theoretical argument for detecting them. The analysis in Erpenbeck (Phys. Fluids 9:1293–1306, 1966) points the way toward, but does not constitute, a mathematical proof that such unstable zeros exist. In this paper we identify the mathematical issues left unresolved in Erpenbeck (Phys. Fluids 9:1293–1306, 1966) and provide proofs, together with certain simplifications and extensions, of the main conclusions about stability and instability of detonations contained in that paper. The main mathematical problem, and our principal focus here, is to determine the precise asymptotic behavior as e?¥{\epsilon\to\infty} of solutions to a linear system of ODEs in x, depending on e{\epsilon} and a complex frequency τ as parameters, with turning points x * on the half-line [0,∞).  相似文献   

8.

The nonlinear energy sink (NES), which is proven to perform rapid and passive targeted energy transfer (TET), has been employed for vibration mitigation in many primary small- and large-scale structures. Recently, the feature of bistability, in which two nontrivial stable equilibria and one trivial unstable equilibrium exist, is utilized for passive TET in what is known as bistable NES (BNES). The BNES generates a nonlinear force that incorporates negative linear and multiple positive or negative nonlinear stiffness components. In this paper, the BNES is coupled to a linear oscillator (LO) where the dynamic behavior of the resulting LO-BNES system is studied through frequency–energy plots (FEPs), which are generated by analytical approximation using the complexification-averaging method and by numerical continuation techniques. The effect of the length and stiffness of the transverse coupling springs is found to affect the stability and topology of the branches and indicates the importance of the exact physical realization of the system. The rich nonlinear dynamical behavior of the LO-BNES system is also highlighted through the appearance of multiple symmetrical and unsymmetrical in- and out-of-phase backbone branches, especially at low energy levels. The superimposed wavelet frequency spectrums of the LO-BNES response on the FEP have verified the robustness of the TET mechanism where the role of the unsymmetrical NNM backbones in TET is clearly observed.

  相似文献   

9.
《实验力学》2006,21(1):I0001-I0001
In order to offer an opening platform for researchers in Experimental Mechanics community from Asia and other regions to communicate their achievement, the Editorial Committee of Journal of Experimental Mechanics decided to publish an international series…  相似文献   

10.
11.
Results of modeling of heat– and mass–transfer processes proceeding simultaneously in vapor absorption on tube banks are described. Theoretical models of film absorption are presented. The calculation results are compared with experimental data on steam absorption by the lithium bromide solution on a vertical tube. In calculation of transfer processes in absorption on horizontal tubes, the possibility of using solutions for the initial thermal length and for the section with a linear temperature profile is substantiated. The calculations are illustrated by the example of a multipass absorber.  相似文献   

12.
The wave structure in active bubble media in shock tubes with sudden changes of profiles in the form of discontinuities in cross section and a onephase liquid waveguide is analyzed numerically. In axisymmetric formulation, the paper studies wave amplification due to reflection from a wall and focusing at the buttend of a rigid rod aligned coaxially with the channel. In this configuration, the amplification effect results from twodimensional cumulation of the shock wave after it leaves the annular channel and reaches the buttend of the rod. A Mach configuration forms in the focus spot. The geometrical characteristics of the shock tube allow one to control (to some extent) the amplification coefficient and the coordinates of the focus spot. In particular, it is shown that the wave can be focused near the second discontinuity of cross section — a rigid wall (in the region of passage through the interface to the waveguide) — and intensified upon reflection. If the waveguide radius is equal to the height of the Mach stem, the reflected wave has a maximum amplitude.  相似文献   

13.
The spherical expanded polystyrene particle–oil two-phase flow in a vertical pipe was used to simulate the dispersed phase distribution in laminar bubbly flows. A three-dimensional particle image tracking technique was used to track the particles in the flow to study the ordered structure of dispersed phase distribution and its transition to disorder. The ordered structures behaved as particle strings aligned in the flow direction as induced by the flow shear. The structures were quite durable in high liquid velocity flows and dispersed gradually as the liquid velocity decreased. In lower velocity flows, the particles tended to form clusters in the horizontal direction, as predicted by potential theory for spherical bubbles rising in a quiescent inviscid liquid and as observed in experiments on non-shear bubbly water flows.  相似文献   

14.
The bifurcations of penetrative Rayleigh-B′enard convection in cylindrical containers are studied by the linear stability analysis(LSA) combined with the direct numerical simulation(DNS) method. The working ?uid is cold water near 4?C, where the Prandtl number P r is 11.57, and the aspect ratio(radius/height) of the cylinder ranges from 0.66 to 2. It is found that the critical Rayleigh number increases with the increase in the density inversion parameter θ_m. The relationship between the normalized critical Rayleigh number(Rac(θ_m)/Rac(0)) and θ_m is formulated, which is in good agreement with the stability results within a large range of θ_m. The aspect ratio has a minor effect on Rac(θ_m)/Rac(0). The bifurcation processes based on the axisymmetric solutions are also investigated. The results show that the onset of axisymmetric convection occurs through a trans-critical bifurcation due to the top-bottom symmetry breaking of the present system.Moreover, two kinds of qualitatively different steady axisymmetric solutions are identi?ed.  相似文献   

15.
Results of numerical and theoretical studies of supersonic diffusive combustion of a system of plane hydrogen jets in a supersonic air flow are described. It is shown that large–scale vortex structures appear in the mixing zone of the system of hydrogen jets and the cocurrent flow. These vortex structures affect the mechanism of turbulent exchange between the fuel and the oxidizer.  相似文献   

16.
An axisymmetrical hemispherical asperity in contact with a rigid flat is modeled for an elastic–plastic material on the lines of the Kogut–Etsion Model (KE Model) and the Jackson–Green Model (JG Model). The present work extends the previous KE and JG works, accounting for the effect of realistic material behavior in terms of the varying yield strengths and the isotropic strain hardening behavior. The predicted results show that the transition behavior of the materials from the elastic–plastic to the fully plastic case is influenced by the yield strength and the tangent modulus (Et) and such transition do not take place at specific values of interference ratios as suggested by the KE model. New empirical relations are proposed to determine the contact load and the contact area based on the analysis. Numerical results from the finite element modeling are also validated with an experimental ball on flat configuration approach.  相似文献   

17.
The purpose of the present study is to thoroughly understand the stress–strain behavior of polycrystalline NiTi deformed under tension versus compression. To do this, a micro-mechanical model is used which incorporates single crystal constitutive relationships and experimentally measured polycrystalline texture into the self-consistent formulation. For the first time it is quantitatively demonstrated that texture measurements coupled with a micro-mechanical model can accurately predict tension/compression asymmetry in NiTi shape memory alloys. The predicted critical transformation stress levels and transformation stress–strain slopes under both tensile and compressive loading are consistent with experimental results. For textured polycrystalline NiTi deformed under tension it is demonstrated that the martensite evolution is very abrupt, consistent with the Luders type deformation experimentally observed. The abrupt transformation under tension is attributed to the fact that the majority of the grains are oriented along the [111] crystallographic direction, which is soft under tensile loading. Since single crystals of the [111] orientation are hard under compression it is also demonstrated that under compression the martensite in textured polycrystalline NiTi evolves relatively slower.  相似文献   

18.
Gas–Liquid two phase co-current flow in a vertical riser with an internal diameter of 127 mm was investigated in the churn flow pattern. This paper presents detailed experimental data obtained using a Wire Mesh Sensor. It shows that the most obvious features of the flow are huge waves travelling on the liquid film. Wisps, large tendrils of liquid and the product of incomplete atomisation, which had previously detected in smaller diameter pipes, have also been found in the larger diameter pipe employed here. The output of the Wire Mesh Sensor has been used to determine the overall void fraction. When examined within a drift flux framework, it shows a distribution coefficient of ∼1, in contrast to data for lower gas flow rates. Film thickness time series extracted from the Wire Mesh Sensor output have been examined and the trends of mean film thickness, that of the base film and the wave peaks are presented and discussed. The occurrence of wisps and their frequencies have been quantified.  相似文献   

19.
Flashing flow is an important phenomenon in many industrial contexts; however simulation of these flows remains difficult. CFD simulations are able to describe the distribution and evolution of 3D structures in the flow but are dependent on good closure relations for interphase transfer. Nucleation during flashing flow is often neglected in CFD simulation where a minimum starting vapour fraction and a constant bubble number density are given. Models that include nucleation have used wall nucleation terms from 1D system code models, averaged over the domain. In this work, three models for wall nucleation are tested and compared with experimental data from a converging–diverging nozzle. Nucleation is applied at the walls of the domain, and various models are investigated. Good agreement with the critical flow rate and axial profiles are found, but agreement with the radial void fraction data is not satisfactory. Methods of addressing this are explored, and it is found that including a small bulk heterogeneous nucleation term gives the best agreement with the radial profiles, with negligible impact on the axial average properties.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号