首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用密度泛函理论对SinMn (n=2--14)的几何结构和电子性质进行了研究,结果表明,从Si12Mn 团簇开始,Mn原子陷入了Si原子形成的笼内;二阶能量差分,分裂能和垂直电离势都表明5,10,12是团簇的幻数,其中Si12Mn团簇是最稳定的;在所研究的团簇中,Si5Mn团簇中Mn原子的磁矩是最大的(3.923uB);Mn 原子的4s, 3d 和Si原子的3s, 4p的较强杂化是导致Mn原子磁矩减小的原因;当n ≥7时,SinMn团簇的总磁矩是1 uB.  相似文献   

2.
采用密度泛函理论中的广义梯度近似对MgnOn(n=2-8)团簇的几何构型进行优化,并对能量、频率和电子性质进行了计算.结果表明,当n=2,3时,团簇的最低能量结构是平面结构;当n≥4时.团簇的最低能量结构可以看成是由Mg2O2和Mg3O3单元组成的三维结构.O-Mg-O的钝角和较多的电荷转移对团簇的稳定性起着重要的作用.随着团簇尺寸的增大,转移的电荷逐渐增加,转移的电荷量有达到块体中电荷值的趋势.团簇的垂直电离势、亲和势和最高已占据轨道与最低未占据轨道的能隙表明,Mg3O3和Mg6O6是稳定的团簇.  相似文献   

3.
近些年,由于硅半导体材料在微电子工业中的潜在应用,其理论和实验研究备受人们广泛关注。尤其是过渡金属掺杂的硅团簇材料在物理化学性质方面表现了极好的稳定性。这些主要归因于过渡金属含有未填满的d轨道电子,可以填充硅团簇表面的空轨道,减少团簇表面的悬挂键,进而提高整个掺杂硅团簇的结构稳定性,同时产生各种特殊光学、磁性和超导等性质。采用密度泛函理论DFT-B3LYP方法对HmTiSin(m=1~2; n=2~8)团簇的几何结构和电子性质进行了理论计算,讨论了Ti掺杂硅团簇TiSin(n=2~8)及其氢化团簇基态结构的变化规律、解离通道和HOMO-LUMO能隙等特征。结果表明,随着Si原子数目的增加,在TiSin(n=2~8)团簇中其掺杂Ti原子依次吸附在团簇的棱、面及结构内部。当在掺杂团簇表面吸附氢原子时,都优于吸附在团簇的硅原子上,而且绝大多数的氢化结构采纳了TiSin团簇的骨架构型。解离能和HOMO-LUMO能隙的分析结果表明在团簇表面吸附两个H原子时能够明显提高整个团簇的结构稳定性。二阶能量差分的研究发现TiSi2和TiSi6团簇相对其他团簇具有较高的稳定性,同时两个H1TiSi7和H2TiSi7氢化团簇的稳定性更高。此外,模拟了这些氢化团簇的红外振动特征峰,对主要特征峰进行了归属。这些研究将为过渡金属掺杂硅基团簇材料的实验制备和表征提供重要的理论参考。  相似文献   

4.
采用密度泛函理论下的广义梯度近似(Generalized Gradient Approximation, GGA)方法对Mon (n=2~10) 团簇的直线结构、平面结构和立体结构分别进行优化和分析. 结果表明仅直线结构具有双原子对结合趋势, 且偶数团簇比相邻奇数团簇稳定; 平面结构中奇数原子团簇锯齿状较稳定, 偶数原子团簇以多边形较稳定; 立体结构在所有维度中最稳定. 对团簇总磁矩的分析表明直线结构偶数团簇磁矩淬灭, 奇数团簇具有较大的反磁矩; 基态结构中仅Mo3和Mo8有2μB的磁矩. 基态结构的二阶能量差分、垂直电离势和能隙均表明Mo5为幻数团簇, 并分析了其热力学性质.  相似文献   

5.
利用密度泛函理论中的广义梯度近似(GGA)对PbnS(n=1-13)团簇进行几何结构优化,并对能量和频率进行计算,得到了PbnS(n=1-13)团簇的基态结构和稳定结构。计算结果表明:PbnS团簇的平均结合能比Pbn团簇的平均结合能要大,且n=4和10为PbnS团簇的幻数。在PbnS团簇中,电荷都是从Pb原子向S原子转移且以共价键和离子键共存。  相似文献   

6.
利用密度泛函理论中的广义梯度近似(GGA)对PbnS(n=1~13)团簇进行几何结构优化,并对能量和频率进行计算,得到了PbnS(n=1~13)团簇的基态结构和稳定结构.计算结果表明:PbnS团簇的平均结合能比Pbn团簇的平均结合能要大,且n=4和10为PbnS团簇的幻数.在PbnS团簇中,电荷都是从Pb原子向S原子转移且以共价键和离子键共存.  相似文献   

7.
采用密度泛函理论中的广义梯度近似(GGA)对Ge(SiO2)n (n = 1—7)团簇的几何构型进行优化,并对能量、频率和电子性质进行了计算。 结果表明,Ge(SiO2)n的最低能量结构是在(SiO2)n端位O原子以及近邻端位O原子的Si原子上吸附一个Ge原子优化得到;随着锗原子数的增加,增加的锗原子易与原来的锗原子形成锗团簇。掺杂锗原子后团簇的能隙比(SiO2)n团簇的能隙小,当多个Ge原子掺杂到(SiO2)3团簇时,其能隙随着Ge原子个数的增加出现了振荡,Gem(SiO2)3的能隙从可见光区到近红外光区变化。二阶能量差分、分裂能表明Ge(SiO2)2和Ge(SiO2)5团簇是稳定的。  相似文献   

8.
采用密度泛函理论中的广义梯度近似(GGA)对Ge(SiO2)n(n=1~7)团簇的几何构型进行优化,并对能量、频率和电子性质进行了计算.结果表明,Ge(SiO2)n的最低能量结构是在(SiO2)n端位O原子以及近邻端位O原子的Si原子上吸附一个Ge原子优化得到;随着锗原子数的增加,增加的锗原子易与原来的锗原子形成锗团簇.掺杂锗原子后团簇的能隙比(SiO2)n团簇的能隙小,当多个Ge原子掺杂到(SiO2)3团簇时,其能隙随着Ge原子个数的增加出现了振荡,Gem(SiO2)3的能隙从可见光区到近红外光区变化.二阶能量差分、分裂能表明Ge(SiO2)2和Ge(SiO2)5团簇是稳定的.  相似文献   

9.
利用密度泛函理论中的B3LYP/LanL2DZ方法对PdnZr(n=2~8)团簇的几何结构、稳定性、电子性质进行了研究.在优化出的结构的基础上,讨论了PdnZr(n=2~8)团簇的生长模式,计算了团簇基态的平均结合能,离解能,二阶能量差分以及最高占据轨道与最低空轨道之间的能隙.研究表明,较大尺度的PdnZr(n=2~8)团簇的基态是通过在Pdn-1Zr的基础上增加一个Pd原子并与其中的Zr原子相连而形成的;在纯钯团簇中掺杂锆原子后可以提高团簇的稳定性,多数情况下可以降低团簇的化学反应活性;PdnZr(n=2~8)基态团簇中的电荷转移总是从Zr原子到其他Pd原子.  相似文献   

10.
葛桂贤  井群  曹海宾  杨增强  唐光辉  闫红霞 《物理学报》2011,60(10):103102-103102
采用密度泛函理论中的广义梯度近似(GGA) 对 Run Au和Run 团簇的几何构型进行优化,并对能量、频率、电子性质和磁性质进行了计算. 结果表明,Run Au团簇的最低能量结构可以通过Au原子代替Run+1团簇中的Ru原子生长而成.除了局域的结构畸变,Run Au和Run+1团簇具有相似的几何结构.二阶能量差分、电离势、亲和势和分裂能表明Ru5, Ru8, Ru5Au, Ru8Au 是稳定的团簇,Au的掺杂没有改变Run 的相对稳定性.通过电子性质的分析发现,当Au原子掺杂在Run 中,团簇的化学活性增加,且团簇的能隙主要由电子的配对效应决定;对于大多数团簇来说,Au原子掺杂提高了Run Au的磁矩. 关键词: n Au和Run 团簇')" href="#">Run Au和Run 团簇 几何结构 电子性质  相似文献   

11.
使用卡里普索(CALYPSO)预测团簇可能结构,运用密度泛函理论(DFT)的杂化密度泛函B3LYP,对PdSi_n(n=1-15)团簇的几何结构与电子性质进行了计算,并讨论了团簇的平均结合能、能隙、二阶能量差分以及电子自然布局和极化率.研究结果表明:PdSi_n(n=1-15)团簇的基态构型由平面结构向立体结构演化,最终形成笼形结构;在Sin中掺杂Pd原子增强了团簇的稳定性;PdSi_4与PdSi_(12)团簇是幻数结构,PdSi_4的稳定性和密堆性最好;NCP和NEC分析表明,在PdSi_n基态团簇中,电荷从Si原子向Pd原子转移,在Pd原子内部发生了spd杂化;Si-Si键之间较强的相互作用力是PdSi_4和PdSi_(12)团簇基态结构更加稳定的原因;PdSi_n团簇中原子间的相互作用伴随n值的增大而不断增强.  相似文献   

12.
Bn(n =2-15)团簇的几何结构和电子性质   总被引:5,自引:0,他引:5       下载免费PDF全文
应用密度泛函理论中的B3LYP方法计算并分析了不同生长模式下Bn(n= 2-15)团簇的几何结构及电子性质.同时,比较和讨论了不同生长模式下硼团簇的原子束缚能、能级间隙和第一电离势.研究表明:直线构型稳定性最低,金属性较强,尤其在n=8时能隙仅有0.061eV,说明该团簇已具有金属特征.平面或准平面构型稳定性最高,非金属性强.立体构型的稳定性与金属性介于直线和平面构型之间.另外,还讨论了基态团簇的束缚能、能量二阶差分、能级间隙和第一电离势随团簇尺寸的变化,结果表明B12与B14是幻数团簇.  相似文献   

13.
应用密度泛函理论(DFT) B3LYP方法在6-311+G(d)水平上计算并分析了KBn(n=1~10)团簇的几何结构及电子性质和极化率.通过研究团簇的平均结合能、能级间隙、二阶能量差分分析了团簇的稳定性规律,研究表明: KBn(n=1~10)团簇基态多数为立体构型,能级间隙和二阶能量差分结果表明KB3与KB9是幻数团簇.对团簇基态的极化率研究表明KBn团簇的电子结构随B原子的增加趋于紧凑,基本形成了一定的堆积方式.静态第一超极化率研究表明KB8与KB4两种平面构型的团簇具有较好的非线性光学性能.  相似文献   

14.
葛桂贤  罗有华 《物理学报》2008,57(8):4851-4856
采用密度泛函理论中的广义梯度近似对MgnOn(n=2—8)团簇的几何构型进行优化,并对能量、频率和电子性质进行了计算.结果表明,当n=2,3时,团簇的最低能量结构是平面结构;当n≥4时, 团簇的最低能量结构可以看成是由Mg2O2和Mg3O3单元组成的三维结构.O—Mg—O的钝角和较多的电荷转移对团簇的稳定性 关键词nOn团簇')" href="#">MgnOn团簇 几何结构 电子性质  相似文献   

15.
运用密度泛函理论(DFT),考虑多种初始构型下的自旋多重态,在B3LYP/6-311G基组水平上研究BeSin(n=1-12)团簇的平衡几何结构、电子性质、振动光谱与极化率.结果表明:BeSin团簇在基态附近有许多能量非常接近的同分异构体,且BeSin团簇的基态结构绝大多数为立体结构.n=1时,体系的基态为自旋三重态,n≥2时,则为单重态.铍原子的掺入使得主团簇的电子性质发生了明显的变化,掺杂使得体系的化学稳定性降低.BeSi3,BeSi5,BeSi7与BeSi9是幻数结构.团簇中原子间的成键相互作用随n的增大而增强.  相似文献   

16.
利用密度泛函理论对MgBen(n=2-12)团簇的结构和电子性质进行了研究. 较高的能隙和结合能都表明,3和9是团簇的幻数;随着团簇尺寸的增加,Be原子间的相互作用由范德瓦尔斯到共价键以及金属键过渡. 与Be主团簇相比,MgBen(n=2-12)团簇较早地出现了金属性. 通过电子性质的分析发现,掺杂Mg原子降低了主团簇的稳定性.  相似文献   

17.
运用杂化密度泛函理论方法在(U)B3LYP/Lan L2DZ水平研究了Ru Sin(n=1~6)团簇体系的稳定结构及电子性质.结果发现:Ru Sin(n=1~6)团簇基本保持了纯硅团簇的框架.对原子平均束缚能和分裂能的计算表明,Ru Si6团簇是Ru Sin(n=1~6)团簇中热力学稳定性最强的.对自然电荷分布的研究结果发现,Ru Sin(n=2,4~6)团簇的最低能结构出现电荷反转现象.HOMO-LUMO能隙的研究结果表明掺入钌原子后团簇的化学活性增强了,且Ru Si的化学活性是Ru Sin(n=1~6)团簇最强的.通过对团簇磁矩的研究发现,Ru Si和Ru Si3团簇具有了磁性,其余团簇的总磁矩为零,且Ru Sin(n=1~6)团簇中各原子对团簇总磁矩的贡献不同.  相似文献   

18.
运用卡里普索(CALYPSO)结构预测方法,在杂化密度泛函B3LYP/6-311G+(d)基组水平上,对Al_nCl(n=2-14)团簇的几何结构与电子性质进行优化计算,并讨论了团簇的平均结合能、能隙、二阶能量差分、电离能、亲和能以及电子自然布居和极化率.研究结果表明:Al_nCl(n=2-14)团簇的基态构型由简单平面几何结构向立体结构演化,形成Cl原子戴帽Al_n-1Cl团簇结构;Cl原子的掺杂增大了Al_n团簇的平均结合能;二阶能量差分、能隙、电离能、亲和能的变化表明Al_7Cl是幻数团簇结构;团簇中的电荷总是由Al_原子向Cl原子转移,原子之间的成键作用随着团簇尺寸的增大而增强.  相似文献   

19.
运用卡里普索(CALYPSO)结构预测方法,在杂化密度泛函B3LYP/6-311G+(d)基组水平上,对AlnCl(n=2-14)团簇的几何结构与电子性质进行优化计算,并讨论了团簇的平均结合能、能隙、二阶能量差分、电离能、亲和能以及电子自然布局和极化率。研究结果表明:AlnCl(n=2-14)团簇的基态构型由简单平面几何结构向立体结构演化,形成Cl原子戴帽Aln-1Cl团簇结构;Cl原子的掺杂增大了Aln团簇的平均结合能;二阶能量差分、能隙、电离能、亲和能的变化表明Al7Cl是幻数团簇结构;团簇中的电荷总是由Al原子向Cl原子转移,原子之间的成键作用随着团簇尺寸的增大而增强。  相似文献   

20.
运用卡利普索结构预测方法并结合密度泛函理论中的杂化密度泛函B3LYP方法对CsSi_n~u(n=2-12;u=±1)进行了系统的研究.结果发现:除了CsSi_7~(+1)与CsSi_(2,4,6,10)~(-1)之外,大多数CsSi_n~(±1)团簇的基态结构与对应中性CsSi_n团簇的结构不相同;稳定性分析显示得失电子明显提高了体系的稳定性,CsSi_(4,7,9)~(+1)与CsSi_(2,5)~(-1)分别在对应团簇中具有相对较高的稳定性;Cs原子总是占有正电荷.最后讨论了团簇的电离势、电子亲和能与结构之间的关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号