首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A family of highly sensitive devices based on a graphene nanobridge and superconducting electrodes has been developed, manufactured, and examined. These devices can be used to create a graphene-based integral receiver. A cold-electron bolometer prototype with superconductor-insulator-normal metal tunnel junctions has been studied. Its response to a change in the temperature and external microwave radiation has been measured. A superconducting quantum interferometer with a graphene strip as a weak coupling between superconducting electrodes has been examined. The corresponding modulation of the voltage by a magnetic field at a given current has been measured. The effect of the gate voltage on the resistance of graphene has been analyzed for these samples. To confirm that graphene is single-layer, measurements with the reference samples were performed in high magnetic fields, displaying the half-integer quantum Hall effect.  相似文献   

3.
The reduction of the area of the cross section of a spin-valve-like structure to a nanoscale is an important problem of modern spin electronics. However, the transverse quantization of electronic states in the spin valve, which forms a magnetic nanobridge at this scale, additionally affects not only the magnetoresistance but also the spin-transfer torques. In this work, features of the quantization of the magnetoresistance and spin-angular momentum associated with the spin transfer in a Co/Au/Co metallic nanobridge with metallic contacts have been theoretically analyzed. It has been shown that these features are manifested in oscillations of the microwave sensitivity of a spin-torque diode based on the spin-valve structure mentioned above.  相似文献   

4.
We report conclusive high resolution small angle x-ray scattering evidence that long DNA fragments form an untwisted line hexatic phase between the cholesteric and the crystalline phases. The line hexatic phase is a liquid-crystalline phase with long-range hexagonal bond-orientational order, long-range nematic order, but liquidlike, i.e., short-range, positional order. So far, it has not been seen in any other three dimensional system. By line-shape analysis of x-ray scattering data we found that positional order decreases when the line hexatic phase is compressed. We suggest that such anomalous behavior is a result of the chiral nature of DNA molecules.  相似文献   

5.
The magnetic structure of a plane nanobridge consisting of two ferromagnetic film electrodes connected by a nanosized crossbar of the same material is studied. Due to their magnetoresistive properties, such bridges are of considerable interest for microelectronics. Using a numerical micromagnetics method, it is shown that a domain wall is displaced from the center of the bridge crossbar as the anisotropy constant of the system decreases and reaches a critical value. A phase diagram is constructed, which makes it possible to determine the possible magnetic states of real nanobridges. The mechanism of the phase transformation is described in terms of an analytical model. This model explains the shape of the phase diagram of the nanobridge. Formally, the transformations of the magnetic structure of the nanocontact can be described in terms of the Landau theory of phase transitions in a certain range of parameters of the system.  相似文献   

6.
The components of the dielectric constant of a terbium-based liquid-crystalline complex have been measured in the frequency range of 350–5 × 106 Hz. The magnitude and sign of the dielectric anisotropy of the complex have been determined. Dispersion of the dielectric constants in the liquid-crystalline and isotropic phases has been found. The mechanisms responsible for the relaxation phenomena that appear in the studied sample have been determined. The time of dielectric relaxation, the activation energy, and the dipole moment of the complex have been obtained.  相似文献   

7.
Dielectric spectroscopy investigations in the frequency range 50?Hz to 1?MHz have been carried out on a new ferroelectric liquid-crystalline material (S-(-)-4-(2-n-hexylpropionyloxy)biphenyl-4′-(3-methyl-4-decyloxy)benzoate) possessing a relatively large spontaneous polarization (P s?~?240?nC?cm?2) and containing a lateral methyl group on the aromatic ring of the alkoxybenzoate unit. The effect of temperature on the dielectric relaxation modes has been investigated in the SmC* and N* phases. From dielectric dispersion data, relaxation frequency and dielectric strength of all detected relaxation modes have been evaluated and discussed. A new surface-like mode of relaxation frequency ~11?kHz and dielectric strength 3.8, is seen to appear in the SmC* phase.  相似文献   

8.
王晓东  欧阳洁  苏进 《物理学报》2010,59(9):6369-6376
基于宏观流场控制方程与微观分子取向扩散方程耦合的微-宏观双尺度模型,率先采用无网格方法对液晶聚合物在非均匀剪切流场中的微观结构进行了模拟研究.无网格方法精度高、稳定性好的特性保证了模拟结果的可靠性.研究了Deborah数对平板Poiseuille流中液晶聚合物微观结构的影响,预测出非均匀剪切流场中液晶聚合物的一种单一结构和五种复合结构.指出在复合结构的过渡区,分子运动具有不稳定性,可能产生瑕疵. 关键词: 液晶 微观结构 双尺度 无网格  相似文献   

9.
The phase transition behaviour of various nematic side-chain liquid-crystalline elastomers with different mesogen composition has been explored by means of high-resolution ac calorimetry. Polydomain samples of the same crosslinking density and different type of mesogens have been investigated. The results show a strong dependence of the phase transition features upon the composition of the mesogen. The distance from the critical point, reflected in the sharpness of the heat capacity anomalies, increases when adding a shorter-length mesogen. The results provide new insight for the impact of mesogens on the thermodynamic behaviour and, thus, on the thermomechanical response of nematic liquid-crystalline elastomers.  相似文献   

10.
The popular PISEMA experiment is highly sensitive to the 1H chemical shift dispersion and the choice of the 1H carrier frequency. This is due to the off-resonance 1H irradiation in the FSLG-CP sequence employed during the dipolar evolution period. In the modified approach described in this work, the interfering frequency offset terms are suppressed. In the new pulse schemes, conventional FSLG-CP is intercalated with 180 degrees pulses applied simultaneously to both frequency channels, and with phases set orthogonal to those of the spin-lock fields. The technique is demonstrated on a nematic liquid-crystalline sample. Extensions to amplitude-modulated FSLG-CP recoupling under MAS are also presented.  相似文献   

11.
The character of packing of double-stranded DNA molecules in particles of liquid-crystal dispersions formed as a result of the phase exclusion of DNA molecules from aqueous salt polyethylene glycol solutions has been estimated by comparing the circular dichroism (CD) spectra of these dispersions recorded at different osmotic pressures and temperatures. It is shown that the first cycle of heating of dispersion particles with hexagonally packed double-stranded DNA molecules leads to the occurrence of abnormal optical activity of these particles, which manifests itself in the form of a strong negative CD band, characteristic of DNA cholesterics. Moreover, subsequent cooling is accompanied by a further increase in the abnormal optical activity, which indicates the existence of the “hexagonal → cholesteric packing” phase transition, controlled by both the osmotic pressure of the solution and its temperature. The result obtained can be described in terms of “quasi-nematic” layers composed of orientationally ordered DNA molecules in the structure of dispersion particles. There are two possible ways of packing for these layers, which determine their hexagonal or cholesteric spatial structure. The second heating → cooling cycle confirms these results and is indicative of possible differences in the packing of double-stranded DNA molecules in the hexagonal phase, which depend on the osmotic pressure of the solution.  相似文献   

12.
Nb, NbN, and Nb3Ge nanobridges on sapphire substrates with hysteretic I–V-characteristics are used as active elements in relaxation oscillators. Amplitudes of up to 350 mV and frequencies of up to 500 MHz could be generated, which make these oscillators useful for many applications. Linewidth and amplitude of the relaxation oscillations in dependence of nanobridge geometry are studied in some detail.Dedicated to Prof. Dr. Dres. h.c. A. Scharmann on the occasion of his 60th birthday  相似文献   

13.
Many natural composites exhibit an architecture known as twisted plywood which imparts to them a superior set of physical properties. The origin of this structure is complex and not yet understood. However, it is thought to involve a lyotropic chiral nematic liquid-crystalline mesophase. Indeed, striking structural similarities have been observed and reported between biological fibrous composites and ordered fluids. In this work, a mathematical model based on the Landau-de Gennes theory has been developed to investigate the role played by constraining surfaces in the structural development of a composite material that experiences a liquid-crystalline state during the early steps of its morphogenesis. The goal of this study is to verify the need for an initial constraining surface in the formation of monodomain twisted plywoods as hypothesized by Neville (Tissue & Cell 20, 133 (1988); Biology of Fibrous Composites (Cambridge University Press, 1993)). The numerical simulations qualitatively confirm this theory and highlight the important role that modelling of liquid-crystalline self-assembly plays in the study of tissue morphogenesis.Received: 15 September 2003, Published online: 11 November 2003PACS: 61.30.-v Liquid crystals - 61.30.Dk Continuum models and theories of liquid crystal structure - 61.30.Mp Blue phases and other defect-phases - 61.30.St Lyotropic phases  相似文献   

14.
15.
Temperature, concentration of the solvent and pressure are the parameters that are well known to bring about phase transitions in liquid-crystalline systems. In recent years a new parameter has been added to this list: light. The principle behind these photoinduced transitions is the light-driven shape transformation of certain photoactive materials like, e.g., azobenzene. In this article, we present results of various aspects of our recent investigations on such photoinduced transitions in the nematic phase and highlight the feature that light is a new tool to study phase transitions and the associated critical phenomena.  相似文献   

16.
We study the liquid-crystalline phase behavior of a concentrated suspension of helical flagella isolated from Salmonella typhimurium. Flagella are prepared with different polymorphic states, some of which have a pronounced helical character while others assume a rodlike shape. We show that the static phase behavior and dynamics of chiral helices are very different when compared to simpler achiral hard rods. With increasing concentration, helical flagella undergo an entropy-driven first order phase transition to a liquid-crystalline state having a novel chiral symmetry.  相似文献   

17.
The dipole-dipole contribution to the energy of the pair interaction between DNA molecules has been calculated and analyzed. Rigid fragments of DNA, i.e., of a length of about the persistent length, which have discrete dipole moments of base pairs, are considered. For a given distance between the centers of mass of molecules, the energy of the dipole-dipole interaction is a function of three angular variables; the angles ?1 and ?2 between the central dipoles of both molecules and the z axis passing through the centers of the molecules, as well as the angle ξ between long axes of the molecules, are taken as these variables. It is shown that the dipole energy has minima when the mutual orientation of the molecules satisfies one of the following conditions: (i) ?1 = ?2 = 0 or (ii) ?1 = ?2 = π. The cholesteric twist angle ξ can be both positive and negative in dependence on the type of the minimum. For realistic cholesteric dispersion parameters, the dipole energy is only slightly lower than the experimentally known binding energy of the molecules in dispersion. The results allow the assumption that the dipole forces significantly affect the structure and other properties of DNA suspensions; in particular, they can lead to nontrivial texture phenomena, biaxial correlation, and multistability.  相似文献   

18.
It has been shown that the principally new-type solitons and bisolitons are generated during the pulse impact of ultrasound and hypersound on crystal monatomic materials in addition to the known solitons. New-type bisolitons analogous to the bisolitons previously found by an analytical approach have been discovered with the use of the molecular dynamics method. It has been shown that the dispersion curve of these bisolitons is close to the dispersion curve of the conventional solitons. A subsonic compression soliton, the dispersion curve of which crosses the phonon dispersion curve, has been found along with the known supersonic compression soliton. The characteristics of the new-type solitons and bisolitons in uranium and plutonium crystal lattices are presented.  相似文献   

19.
The birefringence of liquid-crystalline phases is the result of the parallel order of molecules exhibiting a polarizability anisotropy. The magnitude and sign of the birefringence are determined by the structure and order of the liquid-crystalline phase types as well as by the polarizability properties of the constituent molecules. The characteristic change of the birefringence at phase transitions between liquid-crystalline phases indicates more or less pronounced structural changes. The temperature dependence of the birefringence is due to the temperature change of the molecular order.

It is shown that the structural variety of the liquid crystalline state is reflected by a big variety of their optical anisotropy properties.  相似文献   

20.
Some phyllosilicate compounds have the ability of spontaneous scrolling because of the size mismatch between the covalently bounded metal oxide and silica sheets. Their unique structure and high theoretically predicted Young's modulus (around 210–230 GPa) induce phyllosilicates’ application as reinforcing fillers. However, previous nanomechanical experiments with individual phyllosilicate nanoscrolls are in poor agreement with theory. The main reason for this is the low accuracy of experiments, which leads to large measurement errors compared to measured average values. Here, the study of the mechanical properties of synthetic (Mg1–xNix)3Si2O5(OH)4 phyllosilicates is reported by testing a suspended nanoobject (a nanobridge) with an atomic force microscope (AFM). The Young's modulus of corresponding phyllosilicate model layers is also calculated by means of the density functional theory (DFT). The original AFM approach makes it possible to account for the probe slipping off the nanobridge and determine its boundary conditions. The measured Young's modulus values are considered within the models of surface tension and shear strain contributions. The shear strain appears to have a decisive impact on the measured Young's modulus (from 150 ± 70 GPa to 200 ± 210 GPa) and its spread.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号