首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mode-coupling theory (MCT) is presented for the spin-boson model with a spectral density which accounts for a heat bath made up of lattice vibrations of a dielectric solid (superohmic dissipation). A usual decoupling approximation provides a set of non-linear integral equations which are solved both numerically by iteration on a computer and analytically by means of a frequency dependent ansatz for the memory functions. There is a transition to incoherent motion at a temperatureT * where the bare two-level energy is equal to the damping rate, in contradiction to results obtained previously from a path integral formulation. The discrepancy arises since in the MCT the relevant self-energy function does not exhibit a 1/z-pole atz=0. For tunnelling systems in dielectrics this yields a new relaxation mechanism due to incoherent tunnelling: the present results might require to modify some of the basic assumptions of the standard tunnelling model for dielectric glasses.  相似文献   

2.
The equations of the mode-coupling theory (MCT) for ideal liquid-glass transitions are used for a discussion of the evolution of the density-fluctuation spectra of glass-forming systems for frequencies within the dynamical window between the band of high-frequency motion and the band of low-frequency-structural-relaxation processes. It is shown that the strong interaction between density fluctuations with microscopic wavelength and the arrested glass structure causes an anomalous-oscillation peak, which exhibits the properties of the so-called boson peak. It produces an elastic modulus which governs the hybridization of density fluctuations of mesoscopic wavelength with the boson-peak oscillations. This leads to the existence of high-frequency sound with properties as found by x-ray-scattering spectroscopy of glasses and glassy liquids. The results of the theory are demonstrated for a model of the hard-sphere system. It is also derived that certain schematic MCT models, whose spectra for the stiff-glass states can be expressed by elementary formulas, provide reasonable approximations for the solutions of the general MCT equations.  相似文献   

3.
A new theory for the dynamics of concentrated colloidal suspensions and the colloidal glass transition is proposed. The starting point is the memory function representation of the density correlation function. The memory function can be expressed in terms of a time-dependent pair-density correlation function. An exact, formal equation of motion for this function is derived and a factorization approximation is applied to its evolution operator. In this way a closed set of equations for the density correlation function and the memory function is obtained. The theory predicts an ergodicity breaking transition similar to that predicted by mode-coupling theory, but at a higher density.  相似文献   

4.
We review recent progress on a microscopic theoretical approach to describe the nonlinear response of glass-forming colloidal dispersions under strong external forcing leading to homogeneous and inhomogeneous flow. Using mode-coupling theory (MCT), constitutive equations for the rheology of viscoelastic shear-thinning fluids are obtained. These are, in suitably simplified form, employed in continuum fluid dynamics, solved by a hybrid-Lattice Boltzmann (LB) algorithm that was developed to deal with long-lasting memory effects. The combined microscopic theoretical and mesoscopic numerical approach captures a number of phenomena far from equilibrium, including the yielding of metastable states, process-dependent mechanical properties, and inhomogeneous pressure-driven channel flow.  相似文献   

5.
A mode-coupling formalism is developed for multicomponent systems of particles performing diffusive motion in a uniform host medium. The mode-coupling equations are derived from a set of nonlinear fluctuating diffusion equations by expanding the concentration-dependent diffusion constants about their equilibrium values. From the mode-coupling equations the dominant long time behavior of current-current and super-Burnett correlation functions is derived. As specific applications I consider the long time behaviors of these correlation functions for collective and tracer diffusion in a one-component lattice gas with particle-conserving stochastic dynamics. The results agree with those from exactly solvable models and computer simulations.  相似文献   

6.
In this paper the Martin-Siggia-Rose (MSR) functional integral representation is used for the study of the Langevin dynamics of a polymer melt in terms of collective variables: mass density and response field density. The resulting generating functional (GF) takes into account fluctuations around the random phase approximation (RPA) up to an arbitrary order. The set of equations for the correlation and response functions is derived. It is generally shown that for cases whenever the fluctuation-dissipation theorem (FDT) holds we arrive at equations similar to those derived by Mori-Zwanzig. The case when FDT in the glassy phase is violated is also qualitatively considered and it is shown that this results in a smearing out of the ideal glass transition. The memory kernel is specified for the ideal glass transition as a sum of all “water-melon” diagrams. For the Gaussian chain model the explicit expression for the memory kernel was obtained and discussed in a qualitative link to the mode-coupling equation. Received: 9 January 1998 / Revised: 24 April 1998 / Accepted: 2 July 1998  相似文献   

7.
The validity of mode-coupling theory (MCT) is restricted by an uncontrolled factorization approximation of density correlations. The factorization can be delayed and ultimately avoided, however, by explicitly including higher order correlations. We explore this approach within a microscopically motivated schematic model. Analytic tractability allows us to discuss in great detail the impact of factorization at arbitrary order, including the limit of avoided factorization. Our results indicate a coherent picture for the capabilities as well as limitations of MCT. Moreover, including higher order correlations systematically defers the transition and ultimately restores ergodicity. Power-law divergence of the relaxation time is then replaced by continuous but exponential growth.  相似文献   

8.
We formulate a Gell'Mann-Low-type renormalization group approach to the critical dynamics of stochastic models described by Langevin or Fokker-Planck equations including mode-coupling terms.Dynamical correlation and response functions are expressed in terms of path integrals, which are investigated by well-known methods of renormalized perturbation theory.Dynamical scaling laws and relations between static and dynamic critical exponents are derived. The leading temperature-dependence of correlation and response functions is obtained from the Kadanoff-Wilson short-distance expansion. We also consider corrections to dynamic scaling which are due to a finite lattice constant.  相似文献   

9.
We discuss the use of coupled nonlinear stochastic differential equations to model the dynamics of complex systems, and present some analytical insights into their critical behaviour. These concern in particular the role of infrared divergences which show up in a self-consistent resummation of perturbation theory (mode-coupling approximation), and their effects on critical exponents obtained in earlier work.  相似文献   

10.
We present a parameter-free theory of the collective excitations in simple liquids such as liquid metals or rare gases. The theory is based on the mode-coupling theory (MCT), which has been previously applied successfully for explaining the liquid-to glass transition. The only input is the liquid structure factor. We achieve good agreement both for the liquid dispersion (maximum of the longitudinal current spectrum) and width (damping) with experimental findings. The time-dependent memory function predicted by MCT has a two-step exponential decay as previously found in computer simulations. Furthermore MCT predicts a scaling of the liquid dispersion with the effective hard-sphere diameter of the materials. This scaling is obeyed by the available experimental data.  相似文献   

11.
We show that facilitated spin mixtures with a tunable facilitation reproduce, on a Bethe lattice, the simplest higher-order singularity scenario predicted by the mode-coupling theory (MCT) of liquid-glass transition. Depending on the facilitation strength, they yield either a discontinuous glass transition or a continuous one, with no underlying thermodynamic singularity. Similar results are obtained for facilitated spin models on a diluted Bethe lattice. The mechanism of dynamical arrest in these systems can be interpreted in terms of bootstrap and standard percolation and corresponds to a crossover from a compact to a fractal structure of the incipient spanning cluster of frozen spins. Theoretical and numerical simulation results are fully consistent with MCT predictions.  相似文献   

12.
We extend mode-coupling theory (MCT) to inhomogeneous situations, relevant for supercooled liquid in an external field. We compute the response of the dynamical structure factor to a static inhomogeneous external potential and provide the first direct evidence that the standard formulation of MCT is associated with a diverging length scale. We find that the so-called cages are, in fact, extended objects. Although close to the transition the dynamic length grows as |T-T(c)|(-1/4) in both the beta and alpha regimes, our results suggest that the fractal dimension of correlated clusters is larger in the alpha regime. We derive inhomogeneous MCT equations valid to second order in gradients.  相似文献   

13.
The interplay of slow dynamics and thermodynamic features of dense liquids is studied by examining how the glass transition changes depending on the presence or absence of Lennard-Jones-like attractions. Quite different thermodynamic behavior leaves the dynamics unchanged, with important consequences for high-pressure experiments on glassy liquids. Numerical results are obtained within mode-coupling theory (MCT), but the qualitative features are argued to hold more generally. A simple square-well model can be used to explain generic features found in experiment.  相似文献   

14.
A theoretical approach is developed to derive a hierarchy of mode-coupling equations for the dynamics of concentrated colloidal suspensions, which improves the prediction of the colloidal glass transition. Our derivation is based on a matrix formalism for stochastic dynamics and the resulting recursive expressions for irreducible memory functions. The 1st order truncation of the generalized mode-coupling closure recovers mode-coupling theory, whereas its 2nd and 3rd order truncations provide corrections. The predictions of the transition volume fraction and Debye-Waller parameter for the hard-sphere colloidal system improve with the increasing mode-coupling order and compare favorably with experimental measurements.  相似文献   

15.
In a previous paper we developed a mode-coupling theory to describe the long time properties of diffusion in stationary, statistically homogeneous, random media. Here the general theory is applied to deterministic and stochastic Lorentz models and several hopping models. The mode-coupling theory predicts that the amplitudes of the long time tails for these systems are determined by spatial fluctuations in a coarse-grained diffusion coefficient and a coarse-grained free volume. For one-dimensional models these amplitudes can be evaluated, and the mode-coupling theory is shown to agree with exact solutions obtained for these models. For higher-dimensional Lorentz models the formal theory yields expressions which are difficult to evaluate. For these models we develop an approximation scheme based upon projecting fluctuations in the diffusion coefficient and free volume onto fluctuations in the density of scatterers.Work supported by grant No. CHE 77-16308 from the National Science Foundation and by a Nato Travel Grant.  相似文献   

16.
A transport theory is formulated within a time-dependent shell-model approach. Time averaging of the equations for macroscopic quantities lead to irreversibility and justifies weak-coupling limit and Markov approximation for the (energy-conserving) one- and two-body collision terms. Two coupled equations for the occupation probabilities of dynamical single-particle states and for the collective variable are derived and explicit formulas for transition rates, dynamical forces, mass parameters and friction coefficients are given. The applicability of the formulation in terms of characteristic quantities of nuclear systems is considered in detail and some peculiarities due to memory effects in the initial equilibration process of heavy-ion collisions are discussed.  相似文献   

17.
Dynamics of five supercooled molecular liquids have been studied using optical heterodyne detected optical Kerr effect experiments. "Intermediate" time scale power law decays (approximately 2 ps to 1-10 ns) with temperature independent exponents close to -1 have been observed in all five samples from high temperature to approximately T(c), the mode-coupling theory (MCT) critical temperature. The amplitude of the intermediate power law increases with temperature as [(T-T(c))/T(c)](1/2). The results cannot be explained by standard MCT, and one possible explanation within MCT would require the higher order singularity scenario, thought to be highly improbable, to be virtually universal.  相似文献   

18.
We propose a fast multi-orbital impurity solver for dynamical mean field theory (DMFT). Our DMFT solver is based on the equations of motion (EOMs) for local Green's functions and is constructed by generalizing from the single-orbital case to the multi-orbital case with the inclusion of the inter-orbital hybridizations and applying a mean field approximation to the inter-orbital Coulomb interactions. The two-orbital Hubbard model is studied using this impurity solver within a large range of parameters. The Mott metal-insulator transition and the quasiparticle peak are well described. A comparison of the EOM method with the quantum Monte Carlo method is made for the two-orbital Hubbard model and good agreement is obtained. The developed method hence holds promise as a fast DMFT impurity solver in studies of strongly correlated systems.  相似文献   

19.
Alternative approaches to the calculation of two-neutrino double beta decay amplitudes are suggested which include neither the evaluation of the intermediate nucleus spectrum nor the closure approximation.Dedicated by the co-author to the memory of M. Gmitro.We wish to thank V. Belyaev, S. Bilenky, R. Eramzhyan, A. Ovchinnikova and E. Truhlik for interest and discussions.  相似文献   

20.
New equations for helium spectra calculations are obtained within geometrical interpretation of quantum mechanics suggested by the author earlier. The main idea of the above interpretation is that atoms can be considered not as the systems with many electrons but as a microscopic topological defect of the physical space-time without any point-like particles inside. The groups of symmetry transformations of such defects are suggested to be isomorphic to the symmetry groups of atoms with many identical electrons (permutation group, for example). New equations were derived within approximation that is similar to the one in the self consistent field theory of Hartree-Fok, but these equations differ strongly from Hartree-Fock equations. Numerical calculations of ionization potentials for para—and orto—helium lead to results that are in a good agreement with experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号