首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We address the time-to-space conversion in quantum field theory of mixing. In the general theory of quantum field mixing (with an arbitrary number of mixed fields with either boson or fermion statistics) the mixing relations for flavor states are derived directly from the definition of mixing for quantum fields and the unitary inequivalence of the Fock space of energy- and flavor-eigenstates is found. The time dynamics of the interacting fields can be explicitly solved and the flavor time oscillation formulas can be derived in a general form. In this work, we analyze the conversion of these results to space-oscillations with a generalized method of wave-packets. Emphasizing the antiparticle content, we work entirely within the canonical formalism of creation and annihilation operators that allows us to include the effect due to the nontrivial flavor vacuum.  相似文献   

2.
It is shown that the Martin-Siggie-Rose generating functional dissipative dynamics in the field of potential forces can be rewritten in the form of a functional integral for an euclidean supersymmetric field theory. The existence of a non-equilibrium steady state is equivalent to spontaneous supersymmetry breaking. A supersymmetric diagram technique, which is a convenient covariant form of the conventional dynamic diagram technique is derived.  相似文献   

3.
The density matrix formalism and the equation of motion approach are two semi-analytical methods that can be used to compute the non-equilibrium dynamics of correlated systems. While for a bilinear Hamiltonian both formalisms yield the exact result, for any non-bilinear Hamiltonian a truncation is necessary. Due to the fact that the commonly used truncation schemes differ for these two methods, the accuracy of the obtained results depends significantly on the chosen approach. In this paper, both formalisms are applied to the quantum Rabi model. This allows us to compare the approximate results and the exact dynamics of the system and enables us to discuss the accuracy of the approximations as well as the advantages and the disadvantages of both methods. It is shown to which extent the results fulfill physical requirements for the observables and which properties of the methods lead to unphysical results.  相似文献   

4.
A pure dielectric quantum crystal subjected to an external mechanical force is described by non-equilibrium Green’s functions. In equilibrium the leading approximation leads to the definition of elementary excitations, the phonons in the renormalized harmonic approximation. Their temperature dependent energies are to be determined as solutions of an integral equation. For hydrodynamic disturbances a generalized transport equation for a phonon number density is derived. A similar approximation for the spectral function yields an integral equation for space and time dependent quasiparticle energies which are expressed as functionals of the displacement field and the phonon distribution. The Boltzmann equation for the latter includes the quasi-particle interaction.  相似文献   

5.
A generalized Lindblad equation has been derived for describing the evolution of two dynamical systems interacting with a bath formed by two broadband modes of squeezed light in an entangled state. The transfer of quantum correlations, in particular, entanglement between the bath and dynamic systems, which are taken in the form of two electromagnetic field modes separated by two high-Q cavities, two atoms, and an atom and a mode, has been analyzed. It has been found that the entanglement of the bath is transferred both to two modes and to two atoms, which can form an almost perfect Einstein-Podolsky-Rosen pair. It has been shown that the interaction of the bath with the system consisting of an atom and a mode for which collective boson operators are introduced leads to the appearance of coherent and squeezed states.  相似文献   

6.
Yang-Mills' field is generalized to possess a nontrivial scalar part. The most general transformations for such a field under the 3-parameter isotopic gauge transformation is obtained. Using this generalized gauge field, a gauge invariant Lagrangian is constructed within the framework of the quark model. Interactions for spin-1 as well as for spin-0 are generated. As a further application a weak interaction theory mediated by the generalized gauge (boson) field is formulated. The entire weak interactions are generated in two halfs; the hadron-boson interaction is generated according to Yang-Mills' trick using the generalized gauge field and the other half (boson-lepton, etc.) is then generated by making use of the scalar part of the gauge fields according to the conventional pion gauge principle. The effective Lagrangian is then found to be mediated by the effective propagators which fall off as p−2 at high momenta; the unitarity of the theory can thereby be insured. Universality in weaker sense than the usual one is applied to the intermediate bosons; our theory for β-decay then reduces to Cabibbo's at low energy.  相似文献   

7.
A spinor Lagrangian invariant under global coordinate, local Lorentz and local chiral SU(n) × SU(n) gauge transformations is presented. The invariance requirement necessitates the introduction of boson fields, and a theory for these fields is then developed by relating them to generalizations of the vector connections in general relativity and utilizing an expanded scalar curvature as a boson Lagrangian. In implementing this plan, the local Lorentz group is found to greatly facilitate the correlation of the boson fields occurring in the spinor Lagrangian with the generalized vector connections.The independent boson fields of the theory are assumed to be the inhomogeneously transforming irreducible parts of the connections. It turns out that no homogeneously transforming parts are necessary to reproduce the chiral Lagrangian usually used as a basis for phenomenological field theories. The Lagrangian in question appears when the gravitational interaction is turned off. It includes pseudoscalar, spinor, vector, and axial vector fields, and the vector fields carry mass in spite of the fact that the theory is locally gauge invariant.  相似文献   

8.
The requirement is often made in non-equilibrium statistical mechanics that a transport equation should be derived as that which governs the subdynamics relative to a (small) part of a (large) conservative dynamical system close to equilibrium. We show that such a requirement on the Markovian relaxation of a 1/2-spin imposes that this process be described by a Bloch equation of a very specific form, which we call standard. We show that this reduced dynamics is quasi-free if, and only if, the relaxation time is maximally anisotropic.Research supported in part by NSF grant MCS 76-07286  相似文献   

9.
Efficient and accurate numerical methods are presented for computing ground states and dynamics of the three-dimensional (3D) nonlinear relativistic Hartree equation both without and with an external potential. This equation was derived recently for describing the mean field dynamics of boson stars. In its numerics, due to the appearance of pseudodifferential operator which is defined in phase space via symbol, spectral method is more suitable for the discretization in space than other numerical methods such as finite difference method, etc. For computing ground states, a backward Euler sine pseudospectral (BESP) method is proposed based on a gradient flow with discrete normalization; and respectively, for computing dynamics, a time-splitting sine pseudospectral (TSSP) method is presented based on a splitting technique to decouple the nonlinearity. Both BESP and TSSP are efficient in computation via discrete sine transform, and are of spectral accuracy in spatial discretization. TSSP is of second-order accuracy in temporal discretization and conserves the normalization in discretized level. In addition, when the external potential and initial data for dynamics are spherically symmetric, the original 3D problem collapses to a quasi-1D problem, for which both BESP and TSSP methods are extended successfully with a proper change of variables. Finally, extensive numerical results are reported to demonstrate the spectral accuracy of the methods and to show very interesting and complicated phenomena in the mean field dynamics of boson stars.  相似文献   

10.
The ability to characterise and control matter far away from equilibrium is a frontier challenge facing modern science. In this article, we sketch out a heuristic structure for thinking about the different ways in which non-equilibrium phenomena can impact molecular reaction dynamics. Our analytical schema includes three different regimes, organised according to increasing dynamical resolution: at the lowest resolution, we have conformer phase space, at an intermediate resolution, we have energy space; and at the highest resolution, we have mode space. Within each regime, we discuss practical definitions of non-equilibrium phenomena, mostly in terms of the corresponding relaxation timescales. Using this analytical framework, we discuss some recent non-equilibrium reaction dynamics studies spanning isolated small-molecule ensembles, gas-phase ensembles and solution-phase ensembles. This includes new results that provide insight into how non-equilibrium phenomena impact the solution-phase alkene–hydroboration reaction. We emphasise that interesting non-equilibrium dynamical phenomena often occur when the relaxation timescales characterising each regime are similar. In closing, we reflect on outstanding challenges and future research directions to guide our understanding of how non-equilibrium phenomena impact reaction dynamics.  相似文献   

11.
周光召  苏肇冰 《物理学报》1981,30(3):401-409
本文是我们从微观量子统计理论出发讨论非平衡统计定常态的时间反演对称性质的第二部份。本文应用文献的结果对非平衡统计定常态的普遍性质进行较为系统的讨论。对于具有时间反演对称的非平衡统计定常态,证明了广义(自由能)势函数的存在性;导出了涨落耗散定理的Rayleigh-Jeans极限形式;推广了局部热平衡假设下的Onsager倒易关系;导得了序参量-守恒荷密度普遍方程(TDGL)的“可逆-不可逆”运动分解形式。  相似文献   

12.
We study the generalized n component model of a driven diffusive system with annealed random drive in the large n limit. This non-equilibrium model also describes conserved order parameter dynamics of an equilibrium model of ferromagnets with dipolar interaction. In this limit, at zero temperature a saddle point approximation becomes exact. The length scale in the direction transverse to the driving field acquires an additional logarithmic correction in this limit. Received 24 January 2000 and Received in final form 29 May 2000  相似文献   

13.
In this paper we derive deterministic mesoscopic theories for model continuous spin lattice systems both at equilibrium and non-equilibrium in the presence of thermal fluctuations. The full magnetic Hamiltonian that includes singular integral (dipolar) interactions is also considered at equilibrium. The non-equilibrium microscopic models we consider are relaxation-type dynamics arising in kinetic Monte Carlo or Langevin-type simulations of lattice systems. In this context we also employ the derived mesoscopic models to study the relaxation of such algorithms to equilibrium  相似文献   

14.
J Kupsch 《Pramana》2002,59(2):195-202
The dynamics of a particle which is linearly coupled to a boson field is investigated. The boson field induces superselection rules for the momentum of the particle, if the field is infrared divergent. Thereby the Hamiltonian of the total system remains bounded from below.  相似文献   

15.
A single deductive inference of Schwinger realization (= interacting boson model—IBM), Holstein-Primakoff realization (= truncated quadrupole phonon model—TQM) and Dyson realization (= finite quadrupole phonon model—FQM) of dynamical SU(6) quadrupole collective algebra (QCA) is presented with a full scope of their isomorphism on the level of representations. Dyson realization of QCA is explicitly constructed by using holomorphically parametrized generalized coherent state and explicit form of root vectors. Utilizing appropriate orthogonalizing operators Holstein-Primakoff realization of QCA has been derived from the Dyson realization. The carrier spaces of Schwinger and Holstein-Primakoff realizations are investigated on the same footing and Marshalek's boson is rigorously derived. The intertwining operator which connects Schwinger and Holstein-Primakoff realizations is constructed and its domain and image are determined. It is shown that the intertwining operator has well-defined inverse in a definite factor space of the IBM basis space which is proved to be isomorphic to the physical subspace of the TQM basis space, meaning equivalence of IBM and TQM on level of representations.  相似文献   

16.
Starting with a microscopic hamiltonian for a many-boson system with a hardcore interaction, the grand potential of the system, which contains the order-parameter of the lambda transition as one of the thermodynamical variables, is derived by making use of the finite temperature loop expansion. The divergence difficulty caused by the hardcore interaction is circumvented by the conventional field theoretic perturbational renormalization such that the chemical potential is renormalized instead of the conventional mass renormalization. The grand potential obtained consists of the superfluid part and the finite temperature elementary excitation part. The elementary excitation energy spectrum shows the Goldstone boson mode, namely, the photon, for the zero external field. A non-vanishing external field destroys such a Goldstone boson mode by causing an energy gap at zero momentum. The chemical potential and the critical temperature are also obtained for the weak coupling case. It is shown how the Bose-Einstein condensation is affected by the hardcore interaction.  相似文献   

17.
The general solution for the S matrix of an arbitrary Hamilton system with boson and fermion first- and second-class constraints of general form is obtained. Additional diagrams arise securing unitary and gauge invariance of the theory: the many-particle interaction of fermion and boson ghosts. The generalized Ward identities are obtained.  相似文献   

18.
Two techniques for practical analysis of non-equilibrium system stability, which were demonstrated using an example of dynamics of a charged subsystem in an electrical field, are presented. Analytical formulas of possible instabilities determining their well-known and unknown mechanisms are derived. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 34–39, October, 2006.  相似文献   

19.
The relation between classical and quantum mechanical integrability is investigated for a boson mode coupled to a two-level system. Different semi-classical approximations of this system are considered which are obtained by (i) factorization of expectation values of the two-state variable and the boson, (ii) making a WKB-type approximation, (iii) replacing the boson by a classical field of constant amplitude and fixed frequency and (iv) putting the boson into a self-consistent coherent state. The results vary considerably and include cases of non-integrable and integrable classical dynamics. Quantum mechanically the system is found to satisfy a criterion of quantum mechanical integrability, which we formulate, but the separated Hamiltonian of the boson alone does not have a well-defined classical limit. Numerical results for the energy spectrum and expectation values are obtained, which show a high degree of regularity but also display overlapping avoided crossings usually associated with non-integrable Hamiltonians. The exact dynamics of the occupation probabilities of the two levels is also analysed numerically. The dependence of quantum mechanical recurrence effects (in quantum optics known as revivals) on coupling strength, frequency detuning and initial conditions is studied. The revivals are found to disappear in the case of strong coupling. The Fourier spectra of the dynamical expectation values are also calculated  相似文献   

20.
In this study, we theoretically investigated a generalized stochastic Loewner evolution (SLE) driven by reversible Langevin dynamics in the context of non-equilibrium statistical mechanics. Using the ability of Loewner evolution, which enables encoding of non-equilibrium systems into equilibrium systems, we formulated the encoding mechanism of the SLE by Gibbs entropy-based information-theoretic approaches to discuss its advantages as a means to better describe non-equilibrium systems. After deriving entropy production and flux for the 2D trajectories of the generalized SLE curves, we reformulated the system’s entropic properties in terms of the Kullback–Leibler (KL) divergence. We demonstrate that this operation leads to alternative expressions of the Jarzynski equality and the second law of thermodynamics, which are consistent with the previously suggested theory of information thermodynamics. The irreversibility of the 2D trajectories is similarly discussed by decomposing the entropy into additive and non-additive parts. We numerically verified the non-equilibrium property of our model by simulating the long-time behavior of the entropic measure suggested by our formulation, referred to as the relative Loewner entropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号