首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We develop a general formalism to describe the dynamical behavior of an ensemble of two-level systems in a Fabry-Perot cavity. Our main result is a set of space and time-dependent, integro-differential equations for the slowly varying radiation and atomic variables, which we derive through a precise analysis of the slowly-varying amplitude approximation in the presence of counter-propagating fields. With the help of new and properly chosen variables we recast these equations in a form that makes their boundary conditions formally identical to those of an ideal Fabry-Perot resonator, and introduce in a natural way a modal structure even for systems with arbitrary mirror reflectivity. We derive simplified forms of these equations in the uniform field limit and within the more general single-frequency approximation. Finally, we extend our formulation to include driven systems such as optically bistable devices and the laser with an injected signal.  相似文献   

3.
Starting with an extended Gibbs–Duhem equation and an expression for stress-deformation behavior derived by Oh and Slattery for elastic crystalline solids, we derive a new compatibility constraint on stress at coherent interfaces. Its use is demonstrated in determining the residual stresses developed during oxidation on the surface of a cylinder.  相似文献   

4.
通过对纤维悬浮聚合物熔体的可逆和不可逆热力学过程的耦合,建立了分子链弹性哑铃模型与悬浮纤维取向描述相耦合的、具有均一 (GENERIC) 结构形式的熔体多尺度模型. 由该均一结构的多尺度模型不仅可以得出熔体不同尺度上的应力贡献,还可为一般多尺度模型方程组的建立提供其结构形式均一化的方法. 关键词: GENERIC结构 纤维取向 黏弹性 聚合物  相似文献   

5.
6.
This paper concerns the dynamics of two layers of compressible, barotropic, viscous fluid lying atop one another. The lower fluid is bounded below by a rigid bottom, and the upper fluid is bounded above by a trivial fluid of constant pressure. This is a free boundary problem: the interfaces between the fluids and above the upper fluid are free to move. The fluids are acted on by gravity in the bulk, and at the free interfaces we consider both the case of surface tension and the case of no surface forces. We establish a sharp nonlinear global-in-time stability criterion and give the explicit decay rates to the equilibrium. When the upper fluid is heavier than the lower fluid along the equilibrium interface, we characterize the set of surface tension values in which the equilibrium is nonlinearly stable. Remarkably, this set is non-empty, i.e., sufficiently large surface tension can prevent the onset of the Rayleigh-Taylor instability. When the lower fluid is heavier than the upper fluid, we show that the equilibrium is stable for all non-negative surface tensions and we establish the zero surface tension limit.  相似文献   

7.
Nonlinear, multiplicative Langevin equations for a complete set of slow variables in equilibrium systems are generally derived on the basis of the separation of time scales. The form of the equations is universal and equivalent to that obtained by Green. An equation with a nonlinear friction term for Brownian motion turns out to be an example of the general results. A key method in our derivation is to use different discretization schemes in a path integral formulation and the corresponding Langevin equation, which also leads to a consistent understanding of apparently different expressions for the path integral in previous studies.  相似文献   

8.
N. Tankovsky  E. Syrakov 《Ionics》2009,15(5):589-595
Transient correction terms to the nonlinear differential equations, describing the dynamics of migration and diffusion of the ion charges in electrolytes, have been recently defined and numerically evaluated. The system of equations has been modified in accordance with the obtained non-equilibrium corrections and the system variables have been evaluated in the case when the corrections are space-averaged. The purpose of the present work is to obtain a general solution when both the time and space dependencies of the correction terms are preserved i.e. without space-averaging of the corrections. The obtained, under these conditions, set of dynamical equations has been analytically transformed to a simpler form, which is easier to be tackled numerically. The corrected results, in contrast to the results of uncorrected equations, show much faster convergence to equilibrium of the physical system and manifest the presence of characteristic pre-electrode maxima of the transient ion currents.  相似文献   

9.
Boundary conditions and perturbation theory are combined to create a set of equations which, when solved, yield the reflected and transmitted wave forms in the case of a thin layer of material that is perfectly bonded between two isotropic half-spaces. The set of perturbed boundary conditions is created by first using the fully bonded boundary conditions at each of the two interfaces between the thin layer and the half-spaces. Then, by restricting the layer's thickness to be much smaller than an acoustic wavelength, perturbation theory can be used on these two sets of boundary equations, producing a set of equations which effectively treat the thin layer as a single interface via a perturbation term. With this set of equations, the full range of incident and polar angles can be considered, with results general enough to use with a layer that is anisotropic, nonlinear, or both anisotropic and nonlinear. Finally the validity of these equations is discussed, comparing the computer simulation results of this theory to results from standard methods, and looking at cases where the results (or various properties of the results) are known or can be predicted.  相似文献   

10.
11.
12.
Much of the structure of macroscopic evolution equations for relaxation to equilibrium can be derived from symmetries in the dynamical fluctuations around the most typical trajectory. For example, detailed balance as expressed in terms of the Lagrangian for the path-space action leads to gradient zero-cost flow. We expose a new such fluctuation symmetry that implies GENERIC, an extension of gradient flow where a Hamiltonian part is added to the dissipative term in such a way as to retain the free energy as Lyapunov function.  相似文献   

13.
14.
A mode-coupling formalism is developed for multicomponent systems of particles performing diffusive motion in a uniform host medium. The mode-coupling equations are derived from a set of nonlinear fluctuating diffusion equations by expanding the concentration-dependent diffusion constants about their equilibrium values. From the mode-coupling equations the dominant long time behavior of current-current and super-Burnett correlation functions is derived. As specific applications I consider the long time behaviors of these correlation functions for collective and tracer diffusion in a one-component lattice gas with particle-conserving stochastic dynamics. The results agree with those from exactly solvable models and computer simulations.  相似文献   

15.
In recent years several nonequilibrium thermodynamic frameworks have been developed capable of describing the dynamics of multiphase systems with complex microstructured interfaces. In this paper we present an overview of these frameworks. We will discuss interfacial dynamics in the context of the classical irreversible thermodynamics, extended irreversible thermodynamics, extended rational thermodynamics, and GENERIC framework, and compare the advantages and disadvantages of these frameworks.  相似文献   

16.
T. Shimizu 《Physica A》1975,83(3):486-504
A quantum-mechanical theory of describing systems far from equilibrium is developed. A set of time evolution equations for every moment of macroscopic variables is derived with the aid of the new idempotent operator. From this set of equations nonlinear but closed equations for the first and the second moments are obtained directly. The theory is applied to the problem of a spin interacting with its surroundings. The Bloch equation with the Landau-Lifshitz friction term is derived quantum mechanically. The relation between this method and that of system size expansion is discussed.  相似文献   

17.
Kinetic equations for the hard-sphere system are derived by diagrammatic techniques. A linear equation is obtained for the one-particle-one particle equilibrium time correlation function and a nonlinear equation for the one-particle distribution function in nonequilibrium. Both equations are nonlocal, noninstantaneous, and extremely complicated. They are valid for general density, since statistical correlations are taken into account systematically. This method derives several known and new results from a unified point of view. Simple approximations lead to the Boltzmann equation for low densities and to a modified form of the Enskog equation for higher densities.  相似文献   

18.
Leonard M.C. Sagis 《Physica A》2010,389(4):673-990
The rheological properties of the interfaces in complex multiphase systems often play a crucial role in the dynamic behavior of these systems. For example, these properties affect the dynamics of emulsions, of dispersions of vesicles, of biological fluids, or of free surface flows. In the past three to four decades a vast amount of literature has been produced dealing with the rheological properties of interfaces stabilized by low molecular weight surfactants, proteins, (bio)polymers, lipids, colloidal particles, and various mixtures of these surface active components. The data of these surface rheological experiments are often analyzed with ad hoc generalizations of rheological models used for the analysis of rheological properties of bulk phases. The validity of these generalizations is in general not discussed. Here we show how the extended irreversible thermodynamics (EIT) formalism can be used to generate a wide range of thermodynamically admissible constitutive models for the surface stress tensor, which not only encompass currently used constitutive models, but also suggest several new ones, particularly useful for modelling the nonlinear response of interfaces.  相似文献   

19.
We perform a general study of the thermodynamic properties of static electrically charged black hole solutions of nonlinear electrodynamics minimally coupled to gravitation in three space dimensions. The Lagrangian densities governing the dynamics of these models in flat space are defined as arbitrary functions of the gauge field invariants, constrained by some requirements for physical admissibility. The exhaustive classification of these theories in flat space, in terms of the behaviour of the Lagrangian densities in vacuum and on the boundary of their domain of definition, defines twelve families of admissible models. When these models are coupled to gravity, the flat space classification leads to a complete characterization of the associated sets of gravitating electrostatic spherically symmetric solutions by their central and asymptotic behaviours. We focus on nine of these families, which support asymptotically Schwarzschild-like black hole configurations, for which the thermodynamic analysis is possible and pertinent. In this way, the thermodynamic laws are extended to the sets of black hole solutions of these families, for which the generic behaviours of the relevant state variables are classified and thoroughly analyzed in terms of the aforementioned boundary properties of the Lagrangians. Moreover, we find universal scaling laws (which hold and are the same for all the black hole solutions of models belonging to any of the nine families) running the thermodynamic variables with the electric charge and the horizon radius. These scale transformations form a one-parameter multiplicative group, leading to universal “renormalization group”-like first-order differential equations. The beams of characteristics of these equations generate the full set of black hole states associated to any of these gravitating nonlinear electrodynamics. Moreover the application of the scaling laws allows to find a universal finite relation between the thermodynamic variables, which is seen as a generalized Smarr law. Some particular well known (and also other new) models are analyzed as illustrative examples of these procedures.  相似文献   

20.
A method is presented to obtain stochastic equations of motion for topological defects from the underlying TDGL-like stochastic dissipative field equations. The method makes use of virtual displacements of the Goldstone coordinates of topological defects. Effects of kinematical constraints among Goldstone coordinates are studied. The method is applied to modulated systems and we obtain stochastic equations of motion for interfaces (domain walls) and vortex lines (dislocation or defect lines). The driving force for a vortex line is found to include besides the usual surface tension force a new force due to misfit, which is an analogue of the Magnus force on a quantized vortex line and the Peach-Kochler force on a dislocation. A general expression for interactions between parts of interfaces is obtained in terms of asymptotic forms of field variables far from interfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号