首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analysis of the Dicke model, N two-level atoms interacting with a single radiation mode, is done using the Holstein-Primakoff transformation. The main aim of the paper is to show that, changing the quantization axis with respect to the common usage, it is possible to prove a general result either for N or the coupling constant going to infinity for the exact solution of the model. This completes the analysis, known in the current literature, with respect to the same model in the limit of N and volume going to infinity, keeping the density constant. For the latter the proper axis of quantization is given by the Hamiltonian of the two-level atoms and for the former the proper axis of quantization is defined by the interaction. The relevance of this result relies on the observation that a general measurement apparatus acts using electromagnetic interaction and so, one can state that the thermodynamic limit is enough to grant the appearance of classical effects. Indeed, recent experimental results give first evidence that superposition states disappear interacting with an electromagnetic field having a large number of photons.  相似文献   

2.
We present a general theory for the onset of coherence in collections of heterogeneous maps interacting via a complex connection network. Our method allows the dynamics of the individual uncoupled systems to be either chaotic or periodic, and applies generally to networks for which the number of connections per node is large. We find that the critical coupling strength at which a transition to synchrony takes place depends separately on the dynamics of the individual uncoupled systems and on the largest eigenvalue of the adjacency matrix of the coupling network. Our theory directly generalizes the Kuramoto model of equal strength all-to-all coupled phase oscillators to the case of oscillators with more realistic dynamics coupled via a large heterogeneous network.  相似文献   

3.
运用二维的键长涨落模型和蒙特卡洛方法研究高分子链从一个受限空间到自由空间穿孔过程中,链单体与纳米孔之间的相互作用.结果表明,在不同的链长和纳米孔交互作用下,高分子链成功穿越自由能能垒取决于链长和纳米孔长度,并且由于交互作用降低了自由能能垒,导致高分子链在纳米管的平均捕获时间缩短.  相似文献   

4.
5.
6.
Mario Pellicoro 《Physica A》2010,389(21):4747-4754
The inference of the couplings of an Ising model with given means and correlations is called the inverse Ising problem. This approach has received a lot of attention as a tool to analyze neural data. We show that autoregressive methods may be used to learn the couplings of an Ising model, also in the case of asymmetric connections and for multispin interactions. We find that, for each link, the linear Granger causality is two times the corresponding transfer entropy (i.e., the information flow on that link) in the weak coupling limit. For sparse connections and a low number of samples, the ?1 regularized least squares method is used to detect the interacting pairs of spins. Nonlinear Granger causality is related to multispin interactions.  相似文献   

7.
A motility mechanism based on a simple exclusion process, where the probability of movement of an agent depends on the number of unoccupied nearest-neighbor sites is considered. Such interacting agents are termed myopic. This problem is an extension of the famous blind or myopic ant in a labyrinth problem. For the interacting agent models considered here, each agent plays the role of an ant in a labyrinth, where the paths of allowed sites though the labyrinth consist of sites not occupied by other agents. We derive a nonlinear diffusion equation for the average occupancy of the discrete agent-based model for myopic agents. In contrast, interacting blind agents have a constant probability of movement to each of their nearest-neighbor sites, giving rise to a linear diffusion equation. Insight into the various terms in the nonlinear diffusion coefficient is obtained from a study of multiple subpopulations of interacting myopic agents, where an advection–diffusion equation for each subpopulation is derived, and from tracking an individual agent within the crowd, where a motility coefficient is extracted. Averaged discrete simulation data compares very well with the solution to the continuum models. We also compare the behavior of myopic and blind agents. The myopic motility mechanism is biologically motivated to emulate information an individual cell gathers from environment cues. The multispecies model developed and investigated here assists with the interpretation of experimental data involving the tracking subpopulations of cells within a total cell population.  相似文献   

8.
Two different ways to model the diffusion of alternative choices within a population of individuals in the presence of social externalities are known in the literature. While Galam’s model of rumors spreading considers a majority rule for interactions in several groups, Schelling considers individuals interacting in one large group, with payoff functions that describe how collective choices influence individual preferences. We incorporate these two approaches into a unified general discrete-time dynamic model for studying individual interactions in variously sized groups. We first illustrate how the two original models can be obtained as particular cases of the more general model we propose, then we show how several other situations can be analyzed. The model we propose goes beyond a theoretical exercise as it allows modeling situations which are relevant in economic and social systems. We consider also other aspects such as the propensity to switch choices and the behavioral momentum, and show how they may affect the dynamics of the whole population.  相似文献   

9.
《Physica A》1999,269(1):9-15
We show that the Multinomial Logit model of bounded rational choice can be derived in the same way as the Gibbs–Boltzmann distribution in statistical physics. In particular, this model describes the behavior of a thermodynamic agent (which is an agent whose utility function depends on a very large number of variables) with respect to a small subset of variables “weakly interacting” with the others. We also show that the same model is obtained if entropic control costs or information costs are introduced, in which case the temperature like parameter can be considered as the price of (negative) entropy.  相似文献   

10.
A spin model that displays inverse melting and inverse glass transition is presented and analyzed. Strong degeneracy of the interacting states of an individual spin leads to entropic preference of the "ferromagnetic" phase, while lower energy associated with the noninteracting states yields a "paramagnetic" phase as temperature decreases. An infinite range model is solved analytically for constant paramagnetic exchange interaction, while for its random exchange analogous results based on the replica symmetric solution are presented. The qualitative features of this model are shown to resemble a large class of inverse melting phenomena. First and second order transition regimes are identified.  相似文献   

11.
Analytical results for the spatial dependence of the correlation functions for all meson excitations in perturbative Quantum Chromodynamics, the lowest order, are calculated. The meson screening mass is obtained as a large distance limit of the correlation function. Our analysis leads to a better understanding of the excitations of Quark Gluon Plasma at sufficiently large temperatures and may be of relevance for future numerical calculations with fully interacting Quantum Chromodynamics.  相似文献   

12.
黄飞虎  彭舰  宁黎苗 《物理学报》2014,63(16):160501-160501
随着网络服务的发展,社交网络逐渐成为信息传播的新媒介.因此,研究网络舆情演化具有重要意义和实用价值.为了更好地研究网络舆论,在信息熵的基础上,提出了一个社交网络观点演化模型.此模型存在以下两个特点:一是可以反映个体面对正负两种观点趋向做出抉择时的心理过程;二是可以反映个体形成新观点时主观因素和客观因素的影响.在仿真实验中,讨论了舆论环境对个体观点演化的影响,初始观点和自信度对观点演化的影响,以及意见领袖对群体观点演化的影响.实验结果表明,该模型可以反映真实社交网络中个体的心理学特征,比如个体的观点形成会受到舆论环境的影响,自信的个体不愿意接受他人的观点,当意见领袖存在时群体的观点会受到影响等.  相似文献   

13.
We propose a design for the construction of a laboratory system based on present-day technology which reproduces and thereby simulates the quantum dynamics of the O(3) nonlinear sigma model. Apart from its relevance in condensed-matter theory, this strongly interacting quantum field theory serves as an important toy model for quantum chromodynamics (QCD) since it reproduces many crucial properties of QCD. The proposed design is therefore a feasibility and proof-of-principle study for more general analogue quantum simulators.  相似文献   

14.
Adsorption isotherms are predicted for spherical adsorbates in cylindrical channels of MCM-41 mesoporous materials over a wide range of temperatures by using the “fragment method”. This prediction shows that an equilibrium capillary condensation is impossible for pores with diameters smaller than 2.5 nm. The adsorbate distribution in relatively large pore channels was described by the quasi-chemical approximation (QCA) that takes into account direct pair correlations between interacting molecules. In order to improve the lattice-gas model in the vicinity of the critical point, a calibration function that takes into account information from the fragment method, was introduced into the QCA equations. The influence of the size factor of pores on argon adsorption isotherms was demonstrated.  相似文献   

15.
In the past decades several theoretical Maxwell's demon models have been proposed to exhibit effects such as refrigerating,doing work at the cost of information,and some experiments have been carried out to realize these effects.We propose a model with a two-level demon,information represented by a sequence of bits,and two heat reservoirs.The reservoir that the demon is interacting with depends on the bit.When the temperature difference between the two heat reservoirs is large enough,the information can be erased.On the other hand,when the information is pure enough,heat transfer from one reservoir to the other can happen,resulting in the effect of refrigeration.Genuine examples of such a system are discussed.  相似文献   

16.
The formation of an immunological synapse between two immune cells is a central process in immunity allowing the exchange of information thatis of direct relevance for the cells’ activation states.The macromolecules at the cell-cell interface form a characteristic spatial pattern whose functional impact is largely unknown today.We perform computer simulations of the immunological synapse formationusing an agent-based model approach that monitors the motion and interactionof individual molecules and takes the binding kinetics of receptors and ligands explicitly into account.The emerging molecular patterns are in agreement with those observed ingeometrically repatterned immunological synapses.Furthermore, our model predicts that the diversity of molecular patterns,including dynamic and multifocal structures, is directly related to the receptor-ligand binding affinity.  相似文献   

17.
The opinions and actions of individuals within interacting groups are frequently determined by both social and personal information. When sociality (or the pressure to conform) is strong and individual preferences are weak, groups will remain cohesive until a consensus decision is reached. When group decisions are subject to a bias, representing for example private information known by some members of the population or imperfect information known by all, then the accuracy achieved for a fixed level of bias will increase with population size. In this work we determine how the scaling between accuracy and group size can be related to the microscopic properties of the decision-making process. By simulating a spatial model of opinion dynamics we show that the relationship between the instantaneous fraction of leaders in the population (L), system size (N), and accuracy depends on the frequency of individual opinion switches and the level of population viscosity. When social mixing is slow, and individual opinion changes are frequent, accuracy is determined by the absolute number of informed individuals. As mixing rates increase, or the rate of opinion updates decrease, a transition occurs to a regime where accuracy is determined by the value of $L\sqrt{ N}$ . We investigate the transition between different scaling regimes analytically by examining a well-mixed limit.  相似文献   

18.
Decentralization is a peculiar characteristic of self-organizing systems such as swarm intelligence systems, which function as complex collective responsive systems without central control and operates based on contextual local coordination among relatively simple individual systems. The decentralized particularity of self-organizing systems lies in their capacity to spontaneously respond to accommodate environmental changes in a cooperative manner without external control. However, if members cannot obtain observations of the state of the whole team and environment, they have to share their knowledge and policies with each other through communication in order to adapt to the environment appropriately. In this paper, we propose an information sharing mechanism as an independent decision phase to improve individual members’ joint adaption to the world to fulfill an optimal self-organization in general. We design the information sharing decision analogous to human information sharing mechanisms. In this case, information can be shared among individual members by evaluating the semantic relationship of information based on ontology graph and their local knowledge. That is, if individual member collects more relevant information, the information will be used to update its local knowledge and improve sharing relevant information by measuring the ontological relevance. This will enable more related information to be acquired so that their models will be reinforced for more precise information sharing. Our simulations and experimental results show that this design can share information efficiently to achieve optimal adaptive self-organizing systems.  相似文献   

19.
We propose a discrete-time stochastic dynamics for a system of many interacting agents. At each time step agents aim at maximizing their individual payoff, depending on their action, on the global trend of the system and on a random noise; frictions are also taken into account. The equilibrium of the resulting sequence of games gives rise to a stochastic evolution. In the limit of infinitely many agents, a law of large numbers is obtained; the limit dynamics consist in an implicit dynamical system, possibly multiple valued. For a special model, we determine the phase diagram for the long time behavior of these limit dynamics and we show the existence of a phase, where a locally stable fixed point coexists with a locally stable periodic orbit.  相似文献   

20.
X-ray radiography plays an important role in the study of artworks and archaeological artifacts. The internal structure of objects provides information on genesis, authenticity, painting technique, material condition and conservation history. Transmission radiography, however, does not provide information on the exact elemental composition of objects and heavy metal layers can shadow or obscure the ones including lighter elements. This paper presents the first application of synchrotron-based K-edge absorption imaging applied to paintings. Using highly monochromatic radiation, K-edge imaging is used to obtain elemental distribution images over large areas. Such elemental maps visualize the distribution of an individual pigment throughout the paint stratigraphy. This provides color information on hidden paint layers, which is of great relevance to art historians and painting conservators. The main advantage is the quick data acquisition time and the sensitivity to elements throughout the entire paint stratigraphy. The examination of a test painting is shown and further instrumental developments are discussed. PACS 07.85.Qe; 07.05.Pj  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号