首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
陈大伟  王裴  蔚喜军  孙海权  马东军 《物理学报》2016,65(9):94702-094702
气体相与颗粒相混合流场的声速研究, 由于具有重要的基础理论价值与广泛的工程应用背景, 逐渐受到人们重视. 针对稠密可压缩气粒两相流动, 综合考虑颗粒相所占空间体积以及颗粒间相互作用, 推导给出了新的等熵声速计算公式; 新公式包含了已有的纯气体、稀疏气粒两相流情形的计算公式作为其特例, 一方面验证了公式推导的正确性, 另一方面说明新公式更具有通用性; 分析了不同颗粒质量分数条件下的声速变化规律, 相应结果与普朗特的理论分析符合, 特别对于稠密气粒两相流动工况得到了一些新的物理认识; 开展了颗粒间相互作用建模参数的物理分析, 揭示了其对气粒两相流动声速的影响机理. 本文取得的成果为稠密可压缩气粒两相流动研究以及相关工程应用提供理论支撑.  相似文献   

2.
The distribution of sizes and velocities of droplets initially formed in sprays is an important piece of information needed in the spray modelling, because it defines the initial condition of the spray droplets in the predictive calculations of the downstream two‐phase flow fields. A predictive model for the initial droplet size and velocity distributions in sprays is formulated in this study. The present model incorporates both the deterministic and the stochastic aspect of spray formation process. The deterministic aspect takes into account of the unstable wave motion before the liquid bulk breakup through the linear and nonlinear instability analysis, which provides information for the liquid bulk breakup length, the mass‐mean diameter and a prior distribution for the droplet sizes corresponding to the unstable wave growth of various wavelengths. The stochastic aspect deals with the final stage of droplet formation after the liquid bulk breakup by statistical means through the maximum entropy principle based on Bayesian entropy. The two sub‐models are coupled together by the various source terms signifying the liquid‐gas interaction, the mass mean diameter and the prior distribution based on the instability analysis. The initial droplet size and velocity distributions are measured experimentally by phase‐Doppler interferometry for sprays generated by a planar research nozzle and a practical gas turbine airblast nozzle. For the two nozzles, the liquid bulk sheet is formed before its breakup in a coflowing air stream. It is found that the model predictions are in satisfactory agreement with the experimental data for all the cases measured. Hence the present model may be applied to a variety of practical sprays to specify the initial conditions for the spray droplets formed in practical spray systems.  相似文献   

3.
Recently developed multi‐dimensional coupled fluid‐droplet model is used to investigate the behavior of complex interaction between the liquid precursor droplets and atmospheric pressure plasma (APP). The significance of this droplet‐plasma interaction is not well understood under diverse realm of working conditions in two‐phase flow. In this study, we explain the implication of vaporization of liquid droplets in APP which are subsequently responsible to control major characteristics of surface coating depositions. Coalescence of water droplets is more dominant than Hexamethyldisiloxane (HMDSO) droplets because of its sluggish rate of evaporation. A disparity in the performance of evaporation is identified in two independent mediums, such as gas mixture and discharge plasma using HMDSO precursor. The length of evaporation of droplets is amplified by an increment of gas flow rate indicating with a reduction in the gas temperature and electron mean energy. In particular, the spatio‐temporal density distributions of charged particles show a clear pattern in which the typical nitrogen impurity ions are primarily effective as compared to other helium ionic species along the pulse of droplets in APP. Finally, we contrast the behavior of discharge species in the pure helium and He‐N2 gas mixtures revealing the importance of stepwise and Penning ionization processes. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
In this paper we make use of a detailed particle model and stochastic numerical methods to simulate the particle size distributions of soot particles formed in laminar premixed flames. The model is able to capture the evolution of mass and surface area along with the full structural detail of the particles. The model is validated against previous models for consistency and then used to simulate flames with bimodal and unimodal soot particle distributions. The change in morphology between the particles from these two types of flames provides further evidence of the interplay among nucleation, coagulation, and surface rates. The results confirm the previously proposed role of the strength of the particle nucleation source in defining the instant of transition from coalescent to fractal growth of soot particles.  相似文献   

5.
The natural gas hydrate plugging problems in the mixed pipeline are becoming more and more serious. The hydrate plugging has gradually become an important problem to ensure the safety of pipeline operation. The deposition and heat transfer characteristics of natural gas hydrate particles in the spiral flow pipeline have been studied. The DPM model (discrete phase model) was used to simulate the motion of solid particles, which was used to simulate the complex spiral flow characteristics of hydrate in the pipeline with a long twisted band. The deposition and heat transfer characteristics of gas hydrate particles in the spiral flow pipeline were studied. The velocity distribution, pressure drop distribution, heat transfer characteristics, and particle settling characteristics in the pipeline were investigated. The numerical results showed that compared with the straight flow without a long twisted band, two obvious eddies are formed in the flow field with a long twisted band, and the velocities are maximum at the center of the vortices. Along the direction of the pipeline, the two vortices move toward the pipe wall from near the twisted band, which can effectively carry the hydrate particles deposited on the wall. With the same Reynolds number, the twisted rate was greater, the spiral strength was weaker, the tangential velocity was smaller, and the pressure drop was smaller. Therefore, the pressure loss can be reduced as much as possible with effect of the spiral flow. In a straight light flow, the Nusselt number is in a parabolic shape with the opening downwards. At the center of the pipe, the Nusselt number gradually decreased toward the pipe wall at the maximum, and at the near wall, the attenuation gradient of the Nu number was large. For spiral flow, the curve presented by the Nusselt number was a trough at the center of the pipe and a peak at 1/2 of the pipe diameter. With the reduction of twist rate, the Nusselt number becomes larger. Therefore, the spiral flow can make the temperature distribution more even and prevent the large temperature difference, resulting in the mass formation of hydrate particles in the pipeline wall. Spiral flow has a good carrying effect. Under the same condition, the spiral flow carried hydrate particles at a distance about 3–4 times farther than that of the straight flow.  相似文献   

6.
为了研究气固两相流动大涡模拟中合适的曳力计算模型,本文引入拟颗粒和拟颗粒表面能的概念,通过拟颗粒表面能与外界输入能量之间的平衡关系来确定拟颗粒的粒径。根据拟颗粒粒径,得到运算量较小且考虑颗粒团聚效应的曳力计算模型。应用本文的曳力计算模型对二维竖直槽道内稠密气固两相流动进行了大涡模拟,结果表明颗粒的浓度分布具有上稀下浓,壁面附近浓中心稀及颗粒聚集等特点。这与实验结果在定性上是一致的。对气相和颗粒相的瞬时速度场进行了分析,发现气相和颗粒相速度场分布的非对称性是形成颗粒浓度分布壁面附近浓中心稀的重要原因之一。  相似文献   

7.
韩燕龙  贾富国  曾勇  王爱芳 《物理学报》2015,64(23):234502-234502
为探讨受碾状态颗粒的稳定流动, 在碾辊轴与筛筒组成的受碾区域内, 建立了轴向运动的颗粒流离散元物理模型. 研究结果表明: 受碾区域内各颗粒沿轴向运动能力的差异造成了颗粒流密度不均匀; 颗粒与筛筒间的静摩擦系数影响颗粒轴向流动的形态、速率及集散程度, 受碾区域内单层颗粒的轴向均方偏差与流动时间的平方正相关, 属于“super”扩散; 整体分析受碾区域发现, 颗粒的轴向平均速度沿轴向坐标逐渐增大, 而颗粒的三轴合成平均速度沿轴向坐标逐渐降低; 受碾区域内各轴向位置处颗粒运动的剧烈程度不同, 沿轴向坐标颗粒的波动速度平方呈现先增大后降低而后又增大的趋势; 单颗粒的碰撞总能量损失能谱也表明了颗粒运动程度不同, 即轴向流动时在受碾区域的前半段碰撞剧烈, 能量损失多, 在后半段碰撞程度弱, 能量损失较少. 通过对受碾区域内颗粒流动的数值模拟分析, 明晰了颗粒在受碾条件下稳定流动特性, 有益于碾磨工业对产品品质控制及设备参数优化的研究.  相似文献   

8.
考虑Stefan影响的单颗粒硼着火过程研究   总被引:3,自引:0,他引:3       下载免费PDF全文
方传波  夏智勋  肖云雷  胡建新  刘道平 《物理学报》2013,62(16):164702-164702
针对含硼推进剂固体火箭冲压发动机内单颗粒硼的着火过程展开了系统研究. 考虑硼颗粒周围气相流动以及硼颗粒与周围环境间的传热传质过程, 建立了考虑Stefan流作用的一维硼颗粒着火模型, 研究了硼颗粒实现着火和未能实现着火两种典型情形下硼颗粒及周围气相的参数变化规律, 对两种情形下Stefan流的变化规律及其成因展开了详细分析. 研究表明, 在硼颗粒实现着火的过程中, 液态B2O3的蒸发及硼的 氧化均能在硼颗粒的反应自加热作用下急剧加速, 硼颗粒表面附近的氧气和气相B2O3分布变化剧烈; 在未能实现着火的过程中, 液态B2O3的蒸发和氧气消耗的质量流率相对较小, 并逐渐趋于稳定, 硼颗粒表面附近的氧气和气相B2O3分布相对变化很小.在两种典型情形下, 硼颗粒外表面的Stefan流都会经历先由周围空间流向颗粒表面, 而后变为由颗粒表面流向周围空间的过程. 关键词: 固体火箭冲压发动机 硼颗粒 着火过程 Stefan流  相似文献   

9.
We study capillary condensation between two spherical particles dispersed in the isotropic phase of a nematic liquid crystal. Within the Landau-de Gennes theory, we calculate interaction energies due to the formation of capillary bridges that reproduce experimental observations. Close to the critical point of the transition line separating the no-bridge from the bridge configuration, fluctuations in the particle cluster might be described by an effective two-state system. We show that the transition line vanishes for small particles and that the shape of the interaction potential depends on particle size.  相似文献   

10.
Numerical investigation of the dusty Williamson fluid with the dependency of time has been done in current disquisition. The flow of multiphase liquid/particle suspension saturating the medium is caused by stretching of porous surface. The influence of magnetic field and heat generation/absorption is observed. It is assumed that particle has a spherical shape and distributed uniformly in fluid matrix. The unsteady two-dimensional problems are modeled for both fluid and particle phase using conservation of mass, momentum and heat transfer. The finalized model generates the non-dimensioned parameters, namely Weissenberg number, unsteadiness parameter, magnetic parameter,heat generation/absorption parameter, Prandtl number, fluid particle interaction parameter, and mass concentration parameters. The numerical solution is obtained. Locality of skin friction and Nusselt number is deliberately focused to help of tables and graphs. While inferencing the current article it is clearly observed that increment of Williamson parameter, unsteadiness parameter, magnetic parameter, volume fraction parameter, and mass concentration parameter reduces the velocity profile of fluid and solid particles as well. And increment of Prandtl number, unsteadiness parameter,volume fraction parameter, and mass concentration parameter reduces the temperature profile of fluid and solid particles as well.  相似文献   

11.
利用外加声场促进悬浮在气相中的细颗粒发生相互作用,进而引起颗粒的碰撞和凝并,使得颗粒平均粒径增大、数目浓度降低,是控制细颗粒排放的重要技术途径.为探究驻波声场中单分散细颗粒的相互作用,建立包含曳力、重力、声尾流效应的颗粒相互作用模型,采用四阶经典龙格-库塔算法和二阶隐式亚当斯插值算法对模型进行求解.将数值模拟得到的颗粒声波夹带速度和相互作用过程与相应的解析解和实验结果进行对比,验证模型的准确性.进而研究颗粒初始条件和直径对相互作用特性的影响.结果表明,初始时刻颗粒中心连线越接近声波波动方向、颗粒位置越接近波腹点,颗粒间的声尾流效应就越强,颗粒发生碰撞所需要的时间就越短.研究还发现,颗粒直径对颗粒相互作用的影响取决于初始时刻颗粒中心连线偏离声波波动方向的程度.当偏离较小时,颗粒直径越大,颗粒发生碰撞所需要的时间越短;当偏离很大时,直径较小的颗粒能够发生碰撞,而直径较大的颗粒则无法发生碰撞.  相似文献   

12.
We consider a totally asymmetric exclusion process on the positive half-line. When particles enter the system according to a Poisson source, Liggett has computed all the limit distributions when the initial distribution has an asymptotic density. In this paper we consider systems for which particles enter according to a complex mechanism depending on the current configuration in a finite neighborhood of the origin. For this kind of models, we prove a strong law of large numbers for the number of particles which have entered the system at a given time. Our main tool is a new representation of the model as a multi-type particle system with infinitely many particle types.  相似文献   

13.
In this paper we present a simple theoretical model of how pulsed ultrasound is attenuated by the particles in a solid/liquid flow. The theoretical model is then used to predict the attenuation of sound, given the mass fraction, the density, and the size distribution of the solid particles. The model is verified experimentally for suspensions of 0-10% (by mass) Dolomite ((Ca,Mg)CO3) particles and water. The experimental results show that the attenuation of sound due to particles varies linearly with mass fraction, and that the proposed theoretical model can be used to predict this attenuation. In all experiments the transmitter and receiver array were clamped onto the pipe wall, thus providing a completely non-invasive and non-intrusive measurement technique.  相似文献   

14.
A hybrid two-phase numerical methodology is used to investigate the flow-field subsequent to the detonation of a spherical charge of TNT with an ambient distribution of a dilute cloud of aluminum particles. The interaction of the particle cloud with the contact surface results in Rayleigh–Taylor instability, which grows in time and gives rise to a mixing layer where the detonation products mix with the air and afterburn. At early times, the ambient particles get engulfed into the detonation products and ignite. Subsequently, they catch up with the Rayleigh–Taylor structures, and the vortex rings around the hydrodynamic structures cause transverse dispersion that results in the clustering of particles. Then, the particles leave the mixing layer and quench, yet preserve their hydrodynamic foot print. Preferential heating and combustion of particles occurs due to clustering. A higher initial mass loading in the ambient cloud results in larger clusters due to stronger/larger vortex rings around the hydrodynamic structures. A larger particle size results in the formation of fewer and degenerate clusters when the initial width of the cloud is larger. A theoretical model is used to predict the bubble amplitudes, and are in good accordance with the simulation results. Overall, this study has provided some useful insights on the explosive dispersal of dilute aluminum particle clouds and the gas dynamics of the flow field in the mixing layer.  相似文献   

15.
In this paper, we perform molecular dynamic (MD) simulations to study the two-dimensional packing process of both monosized and random size particles with radii ranging from 1.0 to 7.0 μm. The initial positions as well as the radii of five thousand fine particles were defined inside a rectangular box by using a random number generator. Both the translational and rotational movements of each particle were considered in the simulations. In order to deal with interacting fine particles, we take into account both the contact forces and the long-range dispersive forces. We account for normal and static/sliding tangential friction forces between particles and between particle and wall by means of a linear model approach, while the long-range dispersive forces are computed by using a Lennard-Jones-like potential. The packing processes were studied assuming different long-range interaction strengths. We carry out statistical calculations of the different quantities studied such as packing density, mean coordination number, kinetic energy, and radial distribution function as the system evolves over time. We find that the long-range dispersive forces can strongly influence the packing process dynamics as they might form large particle clusters, depending on the intensity of the long-range interaction strength.  相似文献   

16.
In this paper we give an overview of the cooperative effects in fluctuation driven transport arising from the interaction of a large number of particles. (i) First, we study a model with finite-sized, overdamped Brownian particles interacting via hard-core repulsion. Computer simulations and theoretical calculations reveal a number of novel cooperative transport phenomena in this system, including the reversal of direction of the net current as the particle density is increased, and a very strong and complex dependence of the average velocity on both the size and the average distance of the particles. (ii) Next, we consider the cooperation of a collection of motors rigidly attached to a backbone. This system possesses dynamical phase transition allowing spontaneous directed motion even if the system is spatially symmetric. (iii) Finally, we report on an experimental investigation exploring the horizontal transport of granular particles in a vertically vibrated system whose base has a sawtooth-shaped profile. The resulting material flow exhibits complex collective behavior, both as a function of the number of layers of particles and the driving frequency; in particular, under certain conditions, increasing the layer thickness leads to a reversal of the current, while the onset of transport as a function of frequency occurs gradually in a manner reminiscent of a phase transition. (c) 1998 American Institute of Physics.  相似文献   

17.
A new method for the determination of two characteristics of a sample of particles, the correlation of particle mass density with particle size and the distribution of particle mass density, is presented. The new method to meet these requirements is based on the combination of two optical particle sizing techniques where the measured particle characteristics have a different dependence on particle mass density. Photosedimentation and laser diffraction were chosen as suitable techniques for this goal. The determination of particle mass density by photosedimentation and laser diffraction is based on the fact that for each particle size class of the sample to be analysed the mass density can be calculated by an application of the Lambert-Beer law. The particle size distribution of the sample has to be known for the determination of particle mass density, and it is measured by laser diffraction. From this, two particle characteristics, the relationship of particle mass density and particle size and the distribution of particle mass density, are obtained. The capacity of the algorithm and its limitations are demonstrated by computational simulations including an error propagation analysis. Experimental results are shown for homogeneous and heterogeneous materials.  相似文献   

18.
赵信文  李欣竹  张航  王学军  宋萍  张汉钊  康强  黄金  吴强 《物理学报》2017,66(10):104701-104701
基于平面化爆驱动飞片高压加载技术和激光测速技术,研究了冲击波加载不同粒径锡颗粒群的微喷射行为以及在空气中的减速规律.实验结果表明,锡颗粒的最快喷射速度随粒径增大而显著增大.通过对微喷射形成过程的三维光滑粒子流体动力学方法数值模拟发现,大粒径锡颗粒之间存在较大的空隙结构,冲击波与空隙结构的相互作用诱导产生高速汇聚射流,空隙结构越大对应的喷射速度也越高.此外,通过研究不同粒径颗粒在复杂流场中的减速规律,进一步深化了对微喷射破碎后的颗粒尺度状态以及混合输运特性的认识.研究结果对于预测和分析冲击波加载微米颗粒群的微喷混合特性具有一定价值.  相似文献   

19.
基于气固两相流理论和气溶胶动力学原理,建立流化床收集器(CFBA)内气体细颗粒聚团气固两相双流体模型。对不同入口气体速度、初始颗粒尺寸分布和不同颗粒团聚形成机理下收集器内颗粒聚团流动的流体动力特性进行数值模拟。研究结果表明湍流运动和剪切作用对颗粒聚团的形成起主要作用,布朗运动对颗粒团聚形成的影响可忽略不计。吸收颗粒可有效提高捕获细颗粒和颗粒聚团形成的能力。  相似文献   

20.
激光熔覆中金属粉末粒子与激光相互作用模型   总被引:4,自引:1,他引:3  
杨楠  杨洗陈 《光学学报》2008,29(9):1745-1750
为了对同轴激光熔覆过程中运动的金属粉末粒子的速度和温度进行理论分析,并研究各工艺参量的影响,建立了运动中金属粉末粒子的运动模型和热模型.模拟结果表明,粉嘴几何尺寸、粒子直径以及气/粉两相流初始速度是影响粒子运动行为的重要因素;粉嘴几何尺寸、激光焦点位置、激光发散角、激光功率、粒子直径以及气/粉两相流初始速度是影响粒子热行为的重要因素.在相同的工艺参量下(粉嘴出口内径r=2 mm,粉嘴倾角α=60°,初始气流速度v0=0.8 m/s),基于数字粒子图像测速(DPIV)技术,对316L不锈钢粉末粒子运动模型进行了实验验证.结果表明,运动理论模型是可靠的.该模型是掌握同轴激光熔覆过程中金属粉末粒子运动行为的有效工具;同时,热模型也是分析粉末粒子温度随不同参量变化的重要工具.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号