首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This study describes a new algorithm for charge state determination of complex isotope-resolved mass spectra. This algorithm is based on peak-target Fourier transform (PTFT) of isotope packets. It is modified from the widely used Fourier transform method because Fourier transform may give ambiguous charge state assignment for low signal-to-noise ratio (S/N) or overlapping isotopic clusters. The PTFT algorithm applies a novel "folding" strategy to enhance peaks that are symmetrically spaced about the targeted peak before applying the FT. The "folding" strategy multiplies each point to the high-m/z side of the targeted peak by its counterpart on the low-m/z side. A Fourier transform of this "folded" spectrum is thus simplified, emphasizing the charge state of the "chosen" ion, whereas ions of other charge states contribute less to the transformed data. An intensity-dependent technique is also proposed for charge state determination from frequency signals. The performance of PTFT is demonstrated using experimental electrospray ionization Fourier transform ion cyclotron resonance mass spectra. The results show that PTFT is robust for charge state determination of low S/N and overlapping isotopic clusters, and also useful for manual verification of potential hidden isotopic clusters that may be missed by the current analysis algorithms, i.e., AID-MS or THRASH.  相似文献   

2.
This article describes a new algorithm for charge state determination and deconvolution of electrospray ionization (ESI) mass-to-charge ratio spectra. The algorithm (Zscore) is based on a charge scoring scheme that incorporates all above-threshold members of a family of charge states or isotopic components, and deconvolves both low- and high-resolution mass-to-charge ratio spectra, with or without a peak list (stick plot). A scoring weight factor, log (I/I 0), in which I is the signal magnitude at a calculated mass-to-charge ratio, and I 0 is the signal threshold near that mass-to-charge ratio, was used in most cases. For high-resolution mass-to-charge ratio spectra in which all isotopic peaks are resolved, the algorithm can deconvolve overlapped isotopic multiplets of the same or different charge state. Compared to other deconvolution techniques, the algorithm is robust, rapid, and fully automated (i. e., no user input during the deconvolution process). It eliminates artifact peaks without introducing peak distortions. Its performance is demonstrated for experimental ESI Fourier transform ion cyclotron resonance mass-to-charge ratio spectra (both low and high resolution). Charge state deconvolution to yield a “zero-charge” mass spectrum should prove particularly useful for interpreting spectra of complex mixtures, identifying contaminants, noncovalent adducts, fragments (N-terminal, C-terminal, internal), and chemical modifications of electrosprayed biomacromolecules.  相似文献   

3.
Electrospray ionization of synthetic or biological macromolecules above ∼1–2 kDa in mass typically produces ions of multiple charge states. Several recent papers have illustrated charge reduction as a means to simplify low-resolution electrospray ionization mass spectra, at the cost of significant loss in signal-to-noise ratio. However, if mass resolving power is sufficiently high (as in Fourier transform ion cyclotron resonance mass spectrometry) to resolve the heavy-atom isotopic distribution, then charge reduction actually lowers mass resolving power by a factor proportional to the ion charge. For proteins or nucleic acids of 10–50 kDa in mass, reducing the charge state to unity thus lowers mass resolving power by a factor of 10–50. In other words, as long as it is possible to resolve the isotopic distributions, charge reduction has no advantages for electrospray ionization mass spectrometry and has the very serious disadvantage of greatly degraded mass resolving power. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
We report an evaluation of a modern Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) instrument to determine the general trend of post-excitation radius on total ion abundance, mass measurement accuracy, and isotopic distributions for internally calibrated mass spectra. The optimum post-excitation radius was determined using total ion abundance, mass measurement accuracy (MMA), and isotope ratios. However, despite the utility of internal calibration for achieving ultimate MMA, the internal calibrant ions were insufficient for compensating for sub-optimum ICR cell conditions. The findings presented herein underscore the importance of determining the optimal post-excitation radius in FT-ICR-MS to achieve high ion abundance (low limits of detection), high MMA, and valid isotopic distributions.  相似文献   

5.
High mass-resolving power has been shown to be useful for studying the conformational dynamics of proteins by hydrogen/deuterium (H/D) exchange. A computer algorithm was developed that automatically identifies peptides and their extent of deuterium incorporation from H/D exchange mass spectra of enzymatic digests or fragment ions produced by collisionally induced dissociation (CID) or electron capture dissociation (ECD). The computer algorithm compares measured and calculated isotopic distributions and uses a fast calculation of isotopic distributions using the fast Fourier transform (FFT). The algorithm facilitates rapid and automated analysis of H/D exchange mass spectra suitable for high-throughput approaches to the study of peptide and protein structures. The algorithm also makes the identification independent on comparisons with undeuterated control samples. The applicability of the algorithm was demonstrated on simulated isotopic distributions as well as on experimental data, such as Fourier transform ion cyclotron resonance (FTICR) mass spectra of myoglobin peptic digests, and CID and ECD spectra of substance P.  相似文献   

6.
Electrospray ionization with a forward-geometry magnetic sector mass spectrometer was used for collisionally activated dissociation studies of multiply charged polypeptides and for studying non-covalently bound protein systems. The high-resolution capabilities of a high-performance instrument allow the resolution of isotopic contributions for product ions and molecular ion species. Determination of product ion charge states by this method reduces difficulties in the interpretation of product ion mass spectra from multiply charged precursors, which are generated either in the atmospheric pressure/vacuum electrospray interface or in the collision chamber of the mass spectrometer. Extended tandem mass spectrometric experiments have the potential for sequencing larger polypeptides. However, evidence for isomerization of gas-phase product ions from substance P and substance P analogues was observed, complicating the interpretation of product ion spectra. Non-covalent complexes can also be studied by electrospray ionization magnetic sector MS. The higher m/z range of such an instrument is a major advantage for studying weakly bound systems, such as heme–protein systems (myoglobin, hemoglobin) and protein aggregates (concanavalin A), because of their tendency to form complex ions with relatively low charge states.  相似文献   

7.
Mass analysis of proteolytic fragment peptides following hydrogen/deuterium exchange offers a general measure of solvent accessibility/hydrogen bonding (and thus conformation) of solution-phase proteins and their complexes. The primary problem in such mass analyses is reliable and rapid assignment of mass spectral peaks to the correct charge state and degree of deuteration of each fragment peptide, in the presence of substantial overlap between isotopic distributions of target peptides, autolysis products, and other interferant species. Here, we show that at sufficiently high mass resolving power (m/Δm50% ≥ 100,000), it becomes possible to resolve enough of those overlaps so that automated data reduction becomes possible, based on the actual elemental composition of each peptide without the need to deconvolve isotopic distributions. We demonstrate automated, rapid, reliable assignment of peptide masses from H/D exchange experiments, based on electrospray ionization FT-ICR mass spectra from H/D exchange of solution-phase myoglobin. Combined with previously demonstrated automated data acquisition for such experiments, the present data reduction algorithm enhances automation (and thus expands generality and applicability) for high-resolution mass spectrometry-based analysis of H/D exchange of solution-phase proteins.  相似文献   

8.
An amine specific peptide derivatization strategy involving the use of novel isobaric stable isotope encoded ‘fixed charge’ sulfonium ion reagents, coupled with an analysis strategy employing capillary HPLC, ESI-MS, and automated data dependent ion trap CID-MS/MS, -MS3, and/or ETD-MS/MS, has been developed for the improved quantitative analysis of protein phosphorylation, and for identification and characterization of their site(s) of modification. Derivatization of 50 synthetic phosphopeptides with S,S′-dimethylthiobutanoylhydroxysuccinimide ester iodide (DMBNHS), followed by analysis using capillary HPLC-ESI-MS, yielded an average 2.5-fold increase in ionization efficiencies and a significant increase in the presence and/or abundance of higher charge state precursor ions compared to the non-derivatized phosphopeptides. Notably, 44% of the phosphopeptides (22 of 50) in their underivatized states yielded precursor ions whose maximum charge states corresponded to +2, while only 8% (4 of 50) remained at this maximum charge state following DMBNHS derivatization. Quantitative analysis was achieved by measuring the abundances of the diagnostic product ions corresponding to the neutral losses of ‘light’ (S(CH3)2) and ‘heavy’ (S(CD3)2) dimethylsulfide exclusively formed upon CID-MS/MS of isobaric stable isotope labeled forms of the DMBNHS derivatized phosphopeptides. Under these conditions, the phosphate group stayed intact. Access for a greater number of peptides to provide enhanced phosphopeptide sequence identification and phosphorylation site characterization was achieved via automated data-dependent CID-MS3 or ETD-MS/MS analysis due to the formation of the higher charge state precursor ions. Importantly, improved sequence coverage was observed using ETD-MS/MS following introduction of the sulfonium ion fixed charge, but with no detrimental effects on ETD fragmentation efficiency.  相似文献   

9.
Collision-activated dissociation (CAD) of tryptic peptides is a cornerstone of mass spectrometry-based proteomics research. Principal component analysis of a database containing 15,000 high-resolution CAD mass spectra of gas-phase tryptic peptide dications revealed that they fall into two classes with a good separation between the classes. The main factor determining the class identity is the relative abundance of the peptide bond cleavage after the first two N-terminal residues. A possible scenario explaining this bifurcation involves trans- to cis-isomerization of the N-terminal peptide bond, which facilitates solvation of the N-terminal charge on the second backbone amide and formation of stable b(2) ions in the form of protonated diketopiperazines. Evidence supporting this scenario is derived from statistical analysis of the high-resolution CAD MS/MS database. It includes the observation of the strong deficit of a(3) ions and anomalous amino acid preferences for b(2) ion formation.  相似文献   

10.
Electrospray ionization (ESI) of peptides and proteins produces a series of multiply charged ions with a mass/charge (m/z) ratio between 500 and 2000. The resulting mass spectra are crowded by these multiple charge values for each molecular mass and an isotopic cluster for each nominal m/z value. Here, we report a new algorithm simultaneously to deconvolute and deisotope ESI mass spectra from complex peptide samples based on their mass-dependent isotopic mean pattern. All signals corresponding to one peptide in the sample were reduced to one singly charged monoisotopic peak, thereby significantly reducing the number of signals, increasing the signal intensity and improving the signal-to-noise ratio. The mass list produced could be used directly for database searching. The developed algorithm also simplified interpretation of fragment ion spectra of multiply charged parent ions.  相似文献   

11.
An algorithm is presented for the generation of a reliable peptide component peak table from liquid chromatography-mass spectrometry (LC-MS) and subsequent quantitative analysis of stable isotope coded peptide samples. The method uses chemical noise filtering, charge state fitting, and deisotoping toward improved analysis of complex peptide samples. Overlapping peptide signals in mass spectra were deconvoluted by correlation with modeled peptide isotopic peak profiles. Isotopic peak profiles for peptides were generated in silico from a protein database producing reference model distributions. Doublets of heavy and light labeled peak clusters were identified and compared to provide differential quantification of pairs of stable isotope coded peptides. Algorithms were evaluated using peptides from digests of a single protein and a seven-protein mixture that had been differentially coded with stable isotope labeling agents and mixed in known ratios. The experimental results correlated well with known mixing ratios.  相似文献   

12.
Automated interpretation of high-resolution mass spectra in a reliable and efficient manner represents a highly challenging computational problem. This work aims at developing methods for reducing a high-resolution mass spectrum into its monoisotopic peak list, and automatically assigning observed masses to known fragment ion masses if the protein sequence is available. The methods are compiled into a suite of data reduction algorithms which is called MasSPIKE (Mass Spectrum Interpretation and Kernel Extraction). MasSPIKE includes modules for modeling noise across the spectrum, isotopic cluster identification, charge state determination, separation of overlapping isotopic distributions, picking isotopic peaks, aligning experimental and theoretical isotopic distributions for estimating a monoisotopic peak's location, generating the monoisotopic mass list, and assigning the observed monoisotopic masses to possible protein fragments. The method is tested against a complex top-down spectrum of bovine carbonic anhydrase. Results of each of the individual modules are compared with previously published work.  相似文献   

13.
14.
DeKeyser SS  Li L 《The Analyst》2006,131(2):281-290
Herein we describe a novel method for quantitation using a Fourier transform mass spectrometer (FTMS) equipped with a MALDI ion source. The unique instrumental configuration of FTMS and its ion trapping and storing capabilities enable ion packets originating from two physically distinct samples to be combined in the ion cyclotron resonance (ICR) cell prior to detection. These features are exploited to combine analyte ions from two differentially labeled samples spotted separately and then combined in the ICR cell to generate a single mass spectrum containing isotopically paired peaks for quantitative comparison of relative ion abundances. The utility of this new quantitation via in cell combination (QUICC) approach is explored using peptide standards, a bovine serum albumin tryptic digest, and a crude neuronal tissue extract. We show that spectra acquired using the QUICC scheme are comparable to those obtained from premixing the isotopically labeled samples in solution. In addition, we show direct tissue in situ isotopic formaldehyde labeling of a crustacean neuroendocrine organ, thus demonstrating the potential application of the QUICC methodology for direct tissue quantitative analysis.  相似文献   

15.
A single crystal of Co8(tacn)8(CN)12 has been characterized by microelectrospray ionization mass spectrometry. The spectra obtained by use of Fourier transform ion cyclotron resonance (FT-ICR), ion trap and quadrupole mass spectrometers show the +4, +3, and +2 charge states of the cluster. With the aid of a 9.4 tesla FT-ICR mass spectrometer it was possible to resolve the isotope pattern for each individual charge state. The data collected suggest that microelectrospray renders spectra which are more specific to the intact molecule, whereas more fragmentation is induced under normal electrospray conditions. The present data suggest that microelectrospray is a powerful tool for characterization of Prussian blue complexes.  相似文献   

16.
Concentration factors of 1000 and more reveal dozens of compounds in extracts of water supplies. Library mass spectra for most of these compounds are not available, and alternative means of identification are needed. Determination of the elemental compositions of the ions in mass spectra makes feasible searches of commercial and chemical literature that often lead to compound identification. Instrumental capabilities that constrain the utility of a mass spectrometer for determining ion compositions for compounds that elute from a chromatographic column are scan speed, mass accuracy, linear dynamic range, and resolving power. Mass peak profiling from selected ion recording data (MPPSIRD) performed with a double-focusing mass spectrometer provides the best combination of these capabilities. This technique provides unique ion compositions for ions of higher mass from compounds eluting from a gas chromatograph than can be obtained by orthogonal acceleration time-of-flight (oa-TOF) or Fourier transform ion cyclotron resonance mass spectrometry. Multiple compositions are usually possible for an ion with a mass exceeding 150 Da within the error limits of the mass measurement. The correct composition is selected based on measured exact masses of the mass peak profiles resulting from isotopic ions higher in mass by 1 and 2 Da and accurate measurement of the summed abundances of these isotopic ions relative to the monoisotopic ion. A profile generation model (PGM) automatically determines which compositions are consistent with measured exact masses and relative abundances. The utility of oa-TOF and double-focusing mass spectrometry using ion composition elucidation (MPPSIRD plus the PGM) are considered for determining ion compositions of two compounds found in drinking water extracts and a third compound from a monitoring well at a landfill. Published in 2002 by John Wiley & Sons, Ltd.  相似文献   

17.
Comparative MS/MS studies of singly and doubly charged electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) precursor peptide ions are described. The spectra from these experiments have been evaluated with particular emphasis on the data quality for subsequent data processing and protein/amino acid sequence identification. It is shown that, once peptide ions are formed by ESI or MALDI, their charge state, as well as the collision energy, is the main parameter determining the quality of collision-induced dissociation (CID) MS/MS fragmentation spectra of a given peptide. CID-MS/MS spectra of singly charged peptides obtained on a hybrid quadrupole orthogonal time-of-flight mass spectrometer resemble very closely spectra obtained by matrix-assisted laser desorption/ionization post-source decay time-of-flight mass spectrometry (MALDI-PSD-TOFMS). On the other hand, comparison of CID-MS/MS spectra of either singly or doubly charged ion species shows no dependence on whether ions have been formed by ESI or MALDI. This observation confirms that, at the time of precursor ion selection, further mass analysis is effectively decoupled from the desorption/ionization event. Since MALDI ions are predominantly formed as singly charged species and ESI ions as doubly charged, the associated difference in the spectral quality of MS/MS spectra as described here imposes direct consequences on data processing, database searching using ion fragmentation data, and de novo sequencing when ionization techniques are changed.  相似文献   

18.
Combining source collision-induced dissociation (CID) and tandem mass spectral acquisition in a pseudo-MS(3) experiment using a linear ion trap results in a highly selective and sensitive approach to identifying glycopeptide elution from a protein digest. The increased sensitivity is partially attributed to the nonselective nature of source CID, which allows simultaneous activation of all charge states and coeluting glycoforms generating greater ion abundance for the mass-to-charge (m/z) 204 and/or 366 oxonium ions. Unlike source CID alone, a pseudo-MS(3) approach adds selectivity while improving sensitivity by eliminating chemical noise during the tandem mass spectral acquisition of the oxonium ions in the linear ion trap. Performing the experiments in the hybrid linear ion trap/Fourier transform-ion cyclotron resonance (FT-ICR) enables subsequent high-resolution/high-mass accuracy full-scan mass spectra (MS) and parallel acquisition of MS/MS in the linear ion trap to be completed in 2 s directly following the pseudo-MS(3) scan to collate identification and characterization of glycopeptides in one experimental scan cycle. Analysis of bovine fetuin digest using the combined pseudo-MS(3), high-resolution MS, and data-dependent MS/MS events resulted in identification of four N-linked and two O-linked glycopeptides without enzymatic cleavage of the sugar moiety or release of the sialic acids before analysis. In addition, over 95% of the total protein sequence was identified in one analytical run.  相似文献   

19.
A novel electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer based on a 7-T superconducting magnet was developed for high-resolution accurate mass measurements of large biomolecules. Ions formed at atmospheric pressure using electrospray ionization (ESI) were transmitted (through six differential pumping stages) to the trapped ion cell maintained below 10?9 torr. The increased pumping speed attainable with cryopumping (> 105 L/s) allowed brief pressure excursions to above 10?4 torr, with greatly enhanced trapping efficiencies and subsequent short pumpdown times, facilitating high-resolution mass measurements. A set of electromechanical shutters were also used to minimize the effect of the directed molecular beam produced by the ES1 source and were open only during ion injection. Coupled with the use of the pulsed-valve gas inlet, the trapped ion cell was generally filled to the space charge limit within 100 ms. The use of 10–25 ms ion injection times allowed mass spectra to be obtained from 4 fmol of bovine insulin (Mr 5734) and ubiquitin (Mr 8565, with resolution sufficient to easily resolve the isotopic envelopes and determine the charge states. The microheterogeneity of the glycoprotein ribonuclease B was examined, giving a measured mass of 14,898.74 Da for the most abundant peak in the isotopic envelope of the normally glycosylated protein (i.e., with five mannose and two N-acetylglucosamine residues (an error of approximately 2 ppm) and an average error of approximately 1 ppm for the higher glycosylated and various H3PO4 adducted forms of the protein. Time-domain signals lasting in excess of 80 s were obtained for smaller proteins, producing, for example, a mass resolution of more than 700,000 for the 4+ charge state (m/z 1434) of insulin.  相似文献   

20.
To enable the development of a tandem mass spectrometry (MS/MS) based methodology for selective protein identification and differential quantitative analysis, a novel derivatization strategy is proposed, based on the formation of a "fixed-charge" sulfonium ion on the side-chain of a methionine amino acid residue contained within a protein or peptide of interest. The gas-phase fragmentation behavior of these side chain fixed charge sulfonium ion containing peptides is observed to result in exclusive loss of the derivatized side chain and the formation of a single characteristic product ion, independently of charge state or amino acid composition. Thus, fixed charge containing peptide ions may be selectively identified from complex mixtures, for example, by selective neutral loss scan mode MS/MS methods. Further structural interrogation of identified peptide ions may be achieved by subjecting the characteristic MS/MS product ion to multistage MS/MS (MS3) in a quadrupole ion trap mass spectrometer, or by energy resolved "pseudo" MS3 in a triple quadrupole mass spectrometer. The general principles underlying this fixed charge derivatization approach are demonstrated here by MS/MS, MS3 and "pseudo" MS3 analysis of side chain fixed-charge sulfonium ion derivatives of peptides containing methionine formed by reaction with phenacylbromide. Incorporation of "light" and "heavy" isotopically encoded labels into the fixed-charge derivatives facilitates the application of this method to the quantitative analysis of differential protein expression, via measurement of the relative abundances of the neutral loss product ions generated by dissociation of the light and heavy labeled peptide ions. This approach, termed "selective extraction of labeled entities by charge derivatization and tandem mass spectrometry" (SELECT), thereby offers the potential for significantly improved sensitivity and selectivity for the identification and quantitative analysis of peptides or proteins containing selected structural features, without requirement for extensive fractionation or otherwise enrichment from a complex mixture prior to analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号