首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports a quantitative determination method of (−)-epicatechin in apple juices by measuring of its signal at 7.05 ppm in the 1H NMR spectrum. It is a direct method that does not need any previous derivatization. 1,3,5-Benzenetricarboxylic acid was added to the juice as internal standard for the determination of the absolute concentration of (−)-epicatechin. Ascorbic acid was also added to avoid enzymatic oxidation of the phenolics and to adjust the pH at 2.74, since the chemical shift of some compounds varies with the pH. Standard addition method accomplished with the juices of two different varieties of apples gave recoveries between 95 and 109%. The precision of the method was tested for repeatability (n=5) and reproducibility (n=13) obtaining a coefficient of variation of 5.8 and 8.6%, respectively. Limit of detection, calculated from “3Sy/x+intercept”, is 24 mg l−1.  相似文献   

2.
The binding interaction between (−)-epigallocatechin (EGC) with bovine β-lactoglobulin (βLG) was investigated by fluorescence, circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy methods. The binding parameters were determined by Stern–Volmer equation and the thermodynamic parameters were calculated according to the van’t Hoff equation. The results suggested that βLG was bound by EGC, which resulted in change of native conformation of βLG. van der Waals interactions and hydrogen bonding probably played major roles in the binding process. Our study is helpful for further elucidation of binding interactions between catechins with milk proteins, which would contribute to the development of novel milk products.  相似文献   

3.
In the present study, compact high-speed countercurrent chromatographic apparatus was constructed with three columns connected in series. Two sets of columns were prepared from 10 mm and 12 mm I.D. tubing to form 12 L and 15 L capacities, respectively. Performance of these columns was compared for the separation of (−)-epicatechin gallate (ECG) from a tea extract by flash countercurrent chromatography (FCCC). In each separation, 200 g of the tea extract in 1600 mL of mobile phase was loaded onto the column. The 12 L column gave 7.5 L (35 g of ECG) and the 15 L column gave 9 L (40 g of ECG) of ECG solution without impurities. The ECG solution was directly hydrolyzed by tannase into (−)-epicatechin. The hydrolysate was purified by flash chromatography on AB-8 macroporous resin to give 52 g of EC (purity 99.1%). This scaled up apparatus could be used for the industrial separation of natural products.  相似文献   

4.
We describe a simple derivatization method to determine aldehydes. This method is based on derivatization with d-cysteine and consecutive liquid chromatography–tandem mass spectrometry (LC–MS/MS). The optimum derivatization conditions of aldehydes with d-cysteine were 10 min at 50 °C and pH 7.0. The formed alkyl thiazolidine-4-carboxylic acid derivatives were directly injected in LC–MS/MS. In the established condition, the method was used to detect eight aldehydes in beverages. The limit of detection (LOD) and limit of quantification (LOQ) of the aldehydes were 0.2–1.9 μg L−1 and 0.7–6.0 μg L−1 and the relative standard deviation was less than 2.0% at concentrations of 0.1 mg L−1 and 1.0 mg L−1 with the exception of octanal. All the beverage samples had detectable levels of methanal (0.033–0.145 mg L−1), ethanal (0.085–2.12 mg L−1), propanal (ND to 0.250 mg L−1), butanal (ND to 0.003 mg L−1), pentanal (ND to 0.471 mg L−1), hexanal (ND to 0.805 mg L−1), heptanal (0.019–3.91 mg L−1) and octanal (0.029–0.118 mg L−1).  相似文献   

5.
The sublingual combination of buprenorphine and naloxone (Suboxone®) and Methadone Maintenance Therapy have been found effective in treating heroin addiction. A new analytical method suitable for the simultaneous determination of buprenorphine, norbuprenorphine, methadone and naloxone in human plasma by means of liquid chromatography with coulometric detection has been developed. The chromatographic separation was achieved with a phosphate buffer–acetonitrile mixture as the mobile phase on a cyano column. The monitoring cell of the coulometric detector was set at an oxidation potential of +0.600 V. A rapid clean-up procedure of the biological samples using a microextraction by packed sorbent technique has been implemented, employing a C8 sorbent inserted into a syringe needle. The extraction yield values were satisfactory for all analytes (>85%). The calibration curves were linear over a range of 0.25–20.0 ng mL−1 for buprenorphine and norbuprenorphine, 3.0–1000.0 ng mL−1 for methadone and 0.13–10.0 ng mL−1 for naloxone. The sensitivity was also high with limits of detection of 0.08 ng mL−1 for both buprenorphine and norbuprenorphine, 0.9 ng mL−1 for methadone and 0.04 ng mL−1 for naloxone. The intraday and interday precision data were always satisfactory.The method was successfully applied to plasma samples obtained from former heroin addicts treated with opioid replacement therapy.  相似文献   

6.
A syringe to syringe dispersive liquid phase microextraction-solidified floating organic drop was introduced and used for the simultaneous extraction of trace amounts of albendazole and triclabendazole from different matrices. The extracted analytes were determined by high performance liquid chromatography along with fluorescence detection. The analytical parameters affecting the microextraction efficiency including the nature and volume of the extraction solvent, sample volume, sample pH, ionic strength and the cycles of extraction were optimized. The calibration curves were linear in the range of 0.1–30.0 μg L−1 and 0.2–30.0 μg L−1 with determination coefficients of 0.9999 and 0.9998 for albendazole and triclabendazole respectively. The detection limits defined as three folds of the signal to noise ratio were found to be 0.02 μg L−1 for albendazole and 0.06 μg L−1 for triclabendazole. The inter-day and intra-day precision (RSD%) for both analytes at three concentration levels (0.5, 2.0 and 10.0 μg L−1) were in the range of 6.3–10.1% and 5.0–7.5% respectively. The developed method was successfully applied to determine albendazole and triclabendazole in water, cow milk, honey, and urine samples.  相似文献   

7.
The determination of oxytetracycline in milk samples using a polymer inclusion membrane concept with high performance liquid chromatography (HPLC) was studied. The membranes developed are composed by cellulose acetate as polymer base, Cyanex 923 as carrier and o-nitrophenyl octyl ether as plasticizer. In the optimal conditions, the method exhibits good linearity in the range 0.03–0.20 mg L−1 with a limit of detection and quantification of 8.2 and 27.3 μg L−1 respectively. The method was successfully applied to the analysis of milk samples with high selectivity.  相似文献   

8.
In this work, a polypropylene frit with porous network structure (20 μm pole size) was first utilized as the mould of polymer monolithic material, poly(methacrylic acid-co-ethylene glycol dimethacrylate) (MAA-co-EDMA) monolith was synthesized within channels and macropores of the frit. A simple and sensitive solid-phase microextraction method based on polymer monolith frit coupled with high-performance liquid chromatography (HPLC) was established and applied to analysis of hexanal and heptanal in biological samples (human urine and serum). In the method, small molecule metabolites (aldehydes) in biological samples derivatized with 2,4-dinitrophenylhydrazine (DNPH), and the formed hydrazones were extracted simultaneously on the monolithic frit and thereafter ultrasound-assisted desorbed with acetonitrile as elution solvent. The experimental parameters with regard to polymerization, derivatization and extraction were investigated. Under the optimal conditions, the linearity was in the range of 0.02–5.0 μmol L−1 (r = 0.9994) for both hexanal and heptanal and the limits of detection (S/N = 3) were 0.81 nmol L−1 for hexanal and 0.76 nmol L−1 for heptanal. The relative standard deviations (RSDs, n = 5) were less than 6.5% for the same monolithic frit and less than 8.9% for the different monolithic frits. Satisfactory recoveries ranging from 70.71% to 88.73% were obtained for the urine samples. The method possesses many advantages including simple setup, fast analysis, low cost, sufficient sensitivity, good biological compatibility and less organic solvent consumption. The proposed method is a useful assistant tool in the clinical early diagnosis of lung disease by monitoring aldehyde biomarker candidates in complex biological samples.  相似文献   

9.
This Letter aimed to develop an efficient method for the determination of cyanide ion (CN). A novel colorimetric chemosensor 4-[(1E)-2-(4-hydroxyphenyl)ethenyl]-1-allylpyridinium bromide (HPEAPB) was synthesized. HPEAPB displayed good selectivity toward CN over other competing anions in ethanol. A color change from yellow to red was immediately observed upon the addition of CN and the limit of detection (LOD) was 3.4 × 10−6 mol L−1. The sensing mechanism was discussed by UV–vis, 1H NMR titration, and a comparison study. Colorimetric test paper for CN was prepared by attaching HPEAPB to a chromatography paper, which could be used to detect CN in environmental samples as simply as a pH-indicator paper for pH value. The LOD of the test paper for CN was 2.0 × 10−4 mol L−1. This detection method for CN has potential applications in cyanide ion containing fields by combination of rapid and real-time advantages.  相似文献   

10.
This work presents a new methodology to quantify ethyl carbamate (EC) in fortified wines. The presented approach combines the microextraction by packed sorbent (MEPS), using a hand-held automated analytical syringe, with one-dimensional gas chromatography coupled with mass spectrometry detection (GC–MS). The performance of different MEPS sorbent materials was tested, namely SIL, C2, C8, C18, and M1. Also, several extraction solvents and the matrix effect were evaluated. Experimental data showed that C8 and dichloromethane were the best sorbent/solvent pair to extract EC. Concerning solvent and sample volumes optimization used in MEPS extraction an experimental design (DoE) was carried out. The best extraction yield was achieved passing 300 μL of sample and 100 μL of dichloromethane. The method validation was performed using a matrix-matched calibration using both sweet and dry fortified wines, to minimize the matrix effect. The proposed methodology presented good linearity (R2 = 0.9999) and high sensitivity, with quite low limits of detection (LOD) and quantification (LOQ), 1.5 μg L−1 and 4.5 μg L−1, respectively. The recoveries varied between 97% and 106%, while the method precision (repeatability and reproducibility) was lower than 7%. The applicability of the methodology was confirmed through the analysis of 16 fortified wines, with values ranging between 7.3 and 206 μg L−1. All chromatograms showed good peak resolution, confirming its selectivity. The developed MEPS/GC–MS methodology arises as an important tool to quantify EC in fortified wines, combining efficiency and effectiveness, with simpler, faster and affordable analytical procedures that provide great sensitivity without using sophisticated and expensive equipment.  相似文献   

11.
Three primary nerve agent degradation products (ethyl-, isopropyl- and pinacolyl methylphosphonic acid) have been determined in water samples using on-line solid phase extraction-liquid chromatography and mass spectrometry (SPE-LC–MS) with electrospray ionisation. Porous graphitic carbon was employed for analyte enrichment followed by hydrophilic interaction chromatography. Diethylphosphate was applied as internal standard for quantitative determination of the alkyl methylphosphonic acids (AMPAs). By treating the samples with strong cation-exhange columns on Ba, Ag and H form, the major inorganic anions in water were removed by precipitation prior to the SPE-LC–MS determination. The AMPAs could be determined in tap water with limits of detection of 0.01–0.07 μg L−1 with the [M−H] ions extracted at an accuracy of ±5 mDa. The within and between assay precisions at analyte concentrations of 5 μg L−1 were 2–3%, and 5–9% relative standard deviation, respectively. The developed method was employed for determination of the AMPAs in three natural waters and a simulated waste water sample, spiked at 5 μg L−1. Recoveries of ethyl-, isopropyl- and pinacolyl methylphosphonic acid were 80–91%, 92–103% and 99–106%, respectively, proving the applicability of the technique for natural waters of various origins.  相似文献   

12.
The fast sequential multi-element determination of Ca, Mg, K, Cu, Fe, Mn and Zn in plant tissues by high-resolution continuum source flame atomic absorption spectrometry is proposed. For this, the main lines for Cu (324.754 nm), Fe (248.327 nm), Mn (279.482 nm) and Zn (213.857 nm) were selected, and the secondary lines for Ca (239.856 nm), Mg (202.582 nm) and K (404.414 nm) were evaluated. The side pixel registration approach was studied to reduce sensitivity and extend the linear working range for Mg by measuring at wings (202.576 nm; 202.577 nm; 202.578 nm; 202.580 nm; 202.585 nm; 202.586 nm; 202.587 nm; 202.588 nm) of the secondary line. The interference caused by NO bands on Zn at 213.857 nm was removed using the least-squares background correction. Using the main lines for Cu, Fe, Mn and Zn, secondary lines for Ca and K, and line wing at 202.588 nm for Mg, and 5 mL min− 1 sample flow-rate, calibration curves in the 0.1–0.5 mg L− 1 Cu, 0.5–4.0 mg L− 1 Fe, 0.5–4.0 mg L− 1 Mn, 0.2–1.0 mg L− 1 Zn, 10.0–100.0 mg L− 1 Ca, 5.0–40.0 mg L− 1 Mg and 50.0–250.0 mg L− 1 K ranges were consistently obtained. Accuracy and precision were evaluated after analysis of five plant standard reference materials. Results were in agreement at a 95% confidence level (paired t-test) with certified values. The proposed method was applied to digests of sugar-cane leaves and results were close to those obtained by line-source flame atomic absorption spectrometry. Recoveries of Ca, Mg, K, Cu, Fe, Mn and Zn in the 89–103%, 84–107%, 87–103%, 85–105%, 92–106%, 91–114%, 96–114% intervals, respectively, were obtained. The limits of detection were 0.6 mg L− 1 Ca, 0.4 mg L− 1 Mg, 0.4 mg L− 1 K, 7.7 µg L− 1 Cu, 7.7 µg L− 1 Fe, 1.5 µg L− 1 Mn and 5.9 µg L− 1 Zn.  相似文献   

13.
A high-performance liquid chromatography method was developed for the separation and determination of four cobalamins in seawater. Chromatographic separation was performed on a reversed-phase discovery RP-amide C16 column with buffer potassium dihydrogenphosphate and acetonitrile as the mobile phases in linear gradients elution mode. Cobalamins were previously preconcentrated in C18 resins cartridges. Detection was performed using UV-diode array detector in a range of λ of 200–400 nm. The method showed to be linear over a range of 1–300 ng mL−1 with acceptable precision and accuracy. The detection limits ranged between 0.07 pg mL−1 for 5′-deoxyadenosylcobalamin and 0.5 pg mL−1 for hydroxocobalamin. The mean cobalamins recoveries for direct determination ranged between 76 and 93% for hydroxo-, cyano- and methylcobalamin, while the recovery for 5′-deoxyadenosylcobalamin was only 31% suggesting that the preconcentration method was not valid for this cobalamin. The method was successfully applied to coastal seawater where the concentrations ranged from 4.2 to 7.3 ng L−1 for hydroxo-, 1.4–3.9 ng L−1 for cyano-, 2.1–4.6 ng L−1 for 5′-deoxyadenosyl- and 33–83.5 ng L−1 for methylcobalamin.  相似文献   

14.
Ultrasonic back-extraction of Triton X-100 reverse micelles by a water/chloroform binary system and gas chromatography with flame ionization detection (GC-FID) was developed for extraction and determination of β-sitosterol and cholesterol in soybean and sunflower oil samples. After the homogenization of the oil samples with Triton X-100, an aliquot of 200 μL of methanol was added to the samples to form two phases. The clear Triton X-100 extract obtained by centrifugation was treated with a mixture of water (1000 μL) and chloroform (300 μL) for back-extraction of the analytes into the chloroform phase by ultrasonication. After centrifugation, the sedimented chloroform layer was withdrawn easily by a microsyringe and directly injected into the GC-FID system. The influence of several important parameters on the extraction efficiencies of the analytes was evaluated. Under optimized experimental conditions, the calibration graphs were linear in the range of 1.0–30.0 mg L−1 with coefficient of determination more than 0.994 for both analytes. The method detection limit values were in the range of 0.2–0.7 mg L−1. The lower limit of quantification values were in the range of 0.7–2.4 mg L−1. Intra-day relative standard deviations were in the range of 1.0–2.7%. This procedure was successfully applied with satisfactory results to the determination of β-sitosterol and cholesterol in spiked oil samples. The relative mean recoveries of oil samples ranged from 93.6% to 105.0%.  相似文献   

15.
An organic-assisted alkaline extraction method was developed for the determination of hexavalent chromium (Cr(VI)) in plastics. The solubilization of polymer as a pre-step of the alkaline extraction provided good extraction efficiency of Cr(VI) from the sample. The optimization of the experimental conditions affecting the extraction and UV–vis spectrophotometric analysis was accomplished by evaluating the recovery rate of Cr(VI) through the analysis of Cr(VI) in in-house polymer reference materials (RMs). With the proposed method, most of the Cr(VI) in polymers was released within a short extraction time of 30 min and the Cr(III)-DPCO complex can be kept stable for 24 h. The heating for the extraction of the Cr(VI) was not necessary. The optimal pH of the final solution was fixed at 2.0. The proposed extraction method was applied successfully for the determination of Cr(III) and Cr(VI) in spiked samples. The practical applicability of this new method was evaluated through the analysis of Cr(VI) in in-house polymer RMs. The good linearity was demonstrated at desired concentrations of the range 0–3.3 mg L−1. The detection limits were quite low, varying from 0.0061 to 0.0285 mg L−1. The recovery of Cr(VI) was between 97 and 106%, and the relative standard deviation (R.S.D.) was below 6%.  相似文献   

16.
In this work, a recently developed extraction technique for sample preparation aiming the analysis of volatile and semi-volatile compounds named gas-diffusion microextraction (GDME) is applied in the chromatographic analysis of aldehydes in beer. Aldehydes—namely acetaldehyde (AA), methylpropanal (MA) and furfural (FA)—were simultaneously extracted and derivatized with 2,4-dinitrophenylhydrazine (DNPH), then the derivatives were separated and analyzed by high-performance liquid chromatography with spectrophotometric detection (HPLC–UV). The identity of the eluted compounds was confirmed by high-performance liquid chromatography–atmospheric pressure chemical ionization–mass-spectrometry detection in the negative ion mode (HPLC–APCI–MS). The developed methodology showed good repeatability (ca. 5%) and linearity as well as good limits of detection (AA–12.3, FA–1.5 and MA 5.4 μg L−1) and quantification (AA–41, FA–4.9 and MA 18 μg L−1); it also appears to be competitive in terms of speed and cost of analysis.  相似文献   

17.
A solid-phase extraction (SPE) using multi-walled carbon nanotubes (MWCNTs) as adsorbent coupled with gas chromatography–mass spectrometry (GC–MS) method was developed for the determination of 16 polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. Several condition parameters, such as extraction adsorbents, elution solvents and volumes, and sample loading flow rate and volume were optimized to obtain high SPE recoveries and extraction efficiency. 150 mg MWCNTs as sorbent presented high extraction efficiency of 16 PAHs due to the large specific surface area and high adsorption capacity of MWCNTs compared with the commercial C18 column (250 mg/2 mL). The calibration curves of 16 PAHs extracted were linear in the range of 20–5000 ng L−1, with the correlation coefficients (r2) between 0.9848 and 0.9991. The method attained good precisions (relative standard deviation, RSD) from 1.2% to 12.1% for standard PAHs aqueous solutions; method recoveries ranged in 76.0–125.5%, 74.5–127.0%, and 70.0–122.0% for real spiked samples from river water, tap water and seawater, respectively. Limits of detection (LODs, S/N = 3) of the method were determined from 2.0 to 8.5 ng L−1. The optimized method was successfully applied to the determination of 16 PAHs in real environmental water samples.  相似文献   

18.
An analytical protocol combining a headspace technique with gas chromatography and detection by photoionization detector and flame ionization detector (HS-GC-PID-FID) was developed. This procedure was used to measure volatile organic compounds (VOCs) in environmental aqueous matrices and was applied in determination of VOCs on the coast of Fortaleza, Brazil. At optimum operating conditions, analytical figures of merit such as linearity (R ranged from 0.9983 to 0.9993), repeatability (5.62 to 9.63% and 0.02 to 0.19% for the quantitative and qualitative analyses, respectively), detection limits (0.22 to 7.48 μg L1) and sensibility were estimated. This protocol favors a fast sampling/sample preparation (in situ), minimizes the use of laboratory material, eliminates the matrix effect from environmental samples, and can be applied to river, estuarine and oceanic waters. The advantage of detectors in series is that a low sensitivity in detection in one is compensated by the other. Toluene was the most abundant VOC in the studied area, with an average concentration of 1.63 μg L1. It was followed by o-xylene (1.15 μg L1), trichloroethene (1.08 μg L1), benzene (0.86 μg L1), ethylbenzene (0.74 μg L1), carbon tetrachloride (0.55 μg L1), m/p-xylene (0.48 μg L1) and tetrachloroethene (0.46 μg L1), compounds which are very commonly detected in urban runoff from most cities. The results of the VOC distribution showed that port activity was not the main source of VOCs along the Fortaleza Coast, but that the contribution from urban runoff seemed more significant.  相似文献   

19.
A single-drop microextraction (SDME) procedure was developed for the analysis of organophosphorus and pyrethroid pesticides in water by gas chromatography (GC) with flame ionization detection (GC-FID). The significant parameters that affect SDME performance, such as the selection of microextraction solvent, solvent volume, extraction time, and stirring rate, were studied and optimized using a tool screening factorial design. The limits of detection (LODs) in water for the four investigated compounds were between 0.3 and 3.0 μg L−1, with relative standard deviations ranging from 7.7 to 18.8%. Linear response data were obtained in the concentration range of 0.9-6.0 μg L−1 (λ-cyhalothrin), 3.0-60.0 μg L−1 (methyl parathion), 9.0-60.0 μg L−1 (ethion), and 9.0-30.0 μg L−1 (permethrin), with correlation coefficients ranging from 0.9337 to 0.9977. The relative recoveries for the spiked water ranged from 73.0 to 104%. Environmental water samples (n = 26) were successfully analyzed using the proposed method and methyl parathion presented concentration up to 2.74 μg L−1. The SDME method, coupled with GC-FID analysis, provided good precision, accuracy, and reproducibility over a wide linear range. Other highlights of the method include its ease of use and its requirement of only small volumes of both organic solvent and sample.  相似文献   

20.
In this work, a new stir cake sorptive extraction (SCSE) using polymeric ionic liquid monolith as sorbent was prepared. The sorbent was obtained by in situ copolymerization of an ionic liquid, 1-allyl-3-methylimidazolium bis[(trifluoro methyl)sulfonyl]imide (AMII) and divinylbenzene (DB) in the presence of N,N-dimethylformamide. The influence of the content of ionic liquid and the porogen in the polymerization mixture on extraction performance was studied thoroughly. The physicochemical properties of the polymeric ionic liquid were characterized by infrared spectroscopy, elemental analysis, scanning electron microscopy and mercury intrusion porosimetry. The usefulness of SCSE–AMIIDB was demonstrated by the enrichment of trace benzimidazole anthelmintics. Several parameters affecting the extraction efficiency were investigated, and under the optimized conditions, a simple and effective method for the determination of trace benzimidazoles residues in water, milk and honey samples was established by coupling SCSE–AMIIDB with high performance liquid chromatography/diode array detection (SCSE–AMIIDB–HPLC/DAD). Results indicated that the limits of detection (S/N = 3) for target compounds were 0.020–0.072 μg L−1, 0.035–0.10 μg L−1 and 0.026–0.076 μg L−1 in water, milk and honey samples, respectively. In addition, an acceptable reproducibility was achieved by evaluating the repeatability and intermediate precision with relative standard deviations (RSD) of less than 9% and 11%, respectively. Finally, the established AMII–SCSE–HPLC/DAD method was successfully applied for the determination of benzimidazoles residues in milk, honey and environmental water samples. Recoveries obtained for the determination of benzimidazole anthelmintics in spiking samples ranged from 70.2% to 117.6%, with RSD below 12% in all cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号