首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, a simple, practical and environmentally friendly sample pre-treatment method, ultrasound-assisted surfactant-enhanced emulsification microextraction coupled with high performance liquid chromatography–diode array detector/electrospray ionisation mass spectrometry, was developed to determine diethofencarb and pyrimethanil residues in water and fruit juice samples. Tween 80 was used as an emulsifier and carbon tetrachloride was chosen as the extraction solvent, and no dispersive organic solvent was needed, which is typically required in common dispersive liquid–liquid microextraction methods. Several variables, such as the type and volume of extraction solvent and surfactant, extraction temperature and ultrasound extraction time were investigated and optimised. Under optimal conditions, the enrichment factors were 265 and 253 for diethofencarb and pyrimethanil, respectively. The limits of detection (LODs), calculated as three times the signal-to-noise ratio (S/N), were 0.01 μg L−1 for both diethofencarb and pyrimethanil. The linearity of the method was obtained in the range of 0.05–2000 μg L−1, with correlation coefficients of 0.9994–0.9998. The water (at fortified levels of 0.1 and 1.0 μg L−1) and fruit juice samples (at fortified levels of 0.1 and 1.0 μg L−1) were successfully analysed using the proposed method, and the relative recoveries were in the range of 88–114%, 93–111%, 86–117% and 94–101%, respectively.  相似文献   

2.
A method for the determination of methylmercury in plasma and serum samples was developed. The method uses isotope dilution with 198Hg-labeled methylmercury, extraction into dichloromethane, back-extraction into water, aqueous-phase ethylation, purge and trap collection, thermal desorption, separation by gas chromatography, and mercury isotope specific detection by inductively coupled plasma mass spectrometry. By spiking 2 mL sample with 1.2 ng tracer, measurements in a concentration interval of (0.007–2.9) μg L−1 could be performed with uncertainty amplification factors <2. A limit of quantification of 0.03 μg L−1 was estimated at 10 times the standard deviation of concentrations measured in preparation blanks. Within- and between-run relative standard deviations were <10% at added concentration levels of 0.14 μg L−1, 0.35 μg L−1 and 2.8 μg L−1, with recoveries in the range 82–110%. Application of the method to 50 plasma/serum samples yielded a median (mean; range) concentration of methylmercury of 0.081 (0.091; <0.03–0.19) μg L−1. This is the first time methylmercury has been directly measured in this kind of specimen, and is therefore the first estimate of a reference range.  相似文献   

3.
Cloud point extraction (CPE) methodology has successfully been employed for the preconcentration of ultra-trace arsenic species in aqueous samples prior to hydride generation atomic absorption spectrometry (HGAAS). As(III) has formed an ion-pairing complex with Pyronine B in presence of sodium dodecyl sulfate (SDS) at pH 10.0 and extracted into the non-ionic surfactant, polyethylene glycol tert-octylphenyl ether (Triton X-114). After phase separation, the surfactant-rich phase was diluted with 2 mL of 1 M HCl and 0.5 mL of 3.0% (w/v) Antifoam A. Under the optimized conditions, a preconcentration factor of 60 and a detection limit of 0.008 μg L−1 with a correlation coefficient of 0.9918 was obtained with a calibration curve in the range of 0.03–4.00 μg L−1. The proposed preconcentration procedure was successfully applied to the determination of As(III) ions in certified standard water samples (TMDA-53.3 and NIST 1643e, a low level fortified standard for trace elements) and some real samples including natural drinking water and tap water samples.  相似文献   

4.
We describe a simple derivatization method to determine aldehydes. This method is based on derivatization with d-cysteine and consecutive liquid chromatography–tandem mass spectrometry (LC–MS/MS). The optimum derivatization conditions of aldehydes with d-cysteine were 10 min at 50 °C and pH 7.0. The formed alkyl thiazolidine-4-carboxylic acid derivatives were directly injected in LC–MS/MS. In the established condition, the method was used to detect eight aldehydes in beverages. The limit of detection (LOD) and limit of quantification (LOQ) of the aldehydes were 0.2–1.9 μg L−1 and 0.7–6.0 μg L−1 and the relative standard deviation was less than 2.0% at concentrations of 0.1 mg L−1 and 1.0 mg L−1 with the exception of octanal. All the beverage samples had detectable levels of methanal (0.033–0.145 mg L−1), ethanal (0.085–2.12 mg L−1), propanal (ND to 0.250 mg L−1), butanal (ND to 0.003 mg L−1), pentanal (ND to 0.471 mg L−1), hexanal (ND to 0.805 mg L−1), heptanal (0.019–3.91 mg L−1) and octanal (0.029–0.118 mg L−1).  相似文献   

5.
The UV-induced cold vapor generation with formic acid coupled to AAS after high pressure oxygen microwave decomposition was developed for determination of total Hg in analytical samples. Certified reference materials were decomposed in 1.5 mol L− 1 HNO3 and 0.6 mol L− 1 H2O2. Microwave decomposition with oxygen has allowed the use of diluted reagents. The oxygen at a pressure of ca. 15 bar was delivered during the mineralization to the closed vessel. Interference by unused residues of H2O2 and HNO3 was observed. In order to overcome the negative effect of remaining oxidants pre-reduction with hydroxylammonium chloride at a concentration 0.75 mmol L− 1 was used. Recovery of mercury in four reference materials containing 0.20–1.99 µg g− 1 Hg were 99–104% of certificate values. The limits of detection and quantification in the sample solutions were determined as 0.12 and 0.38 µg L− 1, which corresponds to absolute detection limits of 12 and 38 ng g− 1 for total mercury, respectively. The results were in good agreement with the t-test at a 95% confidence level of the certified values in the investigated reference materials. The relative standard deviation was better than 7% for most of the samples.  相似文献   

6.
A modified preparation of sample was developed for the determination of glutathione content in grape juice and wine by high-performance liquid chromatography with fluorescence detection, using on-line pre-column derivatization. Ice-cold deoxygenated methanol was used to deactivate the oxidation enzymes in juices or wines and keep the glutathione stable. The optimum recovery of glutathione content in grape juice and wine was obtained when either the sample of grape juice or wine was mixed in ice-cold deoxygenated methanol in the ratio 10:90 (v:v) and further diluted in sodium acetate buffer in the ratio 1:1 (v:v). The optimized method was validated for linearity, limit of detection, limit of quantification, precision and uncertainty. According to the validation data the method is appropriate for the determination of glutathione content in grape juice and wine. Glutathione contents in grape juices made from White Muscat grapes and Sauvignon Blanc wines were analysed. The average glutathione content in 28 young Sauvignon Blanc wines was 12.5 mg L−1.  相似文献   

7.
Electrodeposition is known to be proper for separation and preconcentration of extremely low concentrations of analytes from the bulk sample which is instrumentally very simple. In the present research, a combination of electrodeposition with arc atomic emission spectrometry (ED-AAES) method has been developed in order to improve the analytical performance of this spectrometry technique. The results show that sensitivity and detection limits by using ED-AAES were improved 1000–2000 folds over those of normal arc atomic emission spectrometry in determination of the selected elements. The detection limits for measurement of Ni, Cr and Pb were 2.56, 3.05 and 2.11 µg L− 1 for monodeposition and 3.31, 3.72 and 3.25 µg L− 1 for simultaneously deposition, respectively. The precision of determination was in the range of 2–4% RSD. Typical calibration graphs for these elements were linear up to 100 µg L− 1, depending on the element and matrix.Application of this technique was also tested on determination of the studied elements in an electroplating plant's waste water. The accuracy of technique was verified by comparing the results of the waste water analysis with those of electrothermal atomic absorption spectroscopy as a reference standard method.The obtained results show that the combined technique (ED-AAES) has been progressed substantially toward the ultimate goal of direct interference-free determination of trace analysis in complex samples by AAES.  相似文献   

8.
A simple, rapid, and low-cost coulometric method for direct detection of glyphosate using hydrophilic interaction chromatography is presented. The principle of detection is based on the enhancement of the anodic current of copper microelectrode in the presence of complexing agents, such as glyphosate, with the formation of a soluble Cu(II) complex. Under optimized conditions, the limit of detection (S/R = 3) for glyphosate was 0.1 mg L−1 (0.59 μM) without any preconcentration method. The calibration curve has been found linear in all concentration range tested (from limit of detection to 34 mg L−1) with an excellent correlation coefficient (0.9999). The present method was successfully applied for the determination of glyphosate in fruit juices without any kind of extraction, clean-up, or preconcentration step, with recoveries of 92 and 90% for apple and grape juice, respectively.  相似文献   

9.
The potential application of commercial screen-printed gold electrodes (SPGEs) for the trace determination of lead, copper, and mercury in fuel bioethanol is demonstrated. Samples were simply diluted in 0.067 mol L−1 HCl solution prior to square-wave anodic stripping voltammetry (SWASV) measurements recorded with a portable potentiostat. The proposed method presented a low detection limit (<2 μg L−1) for a 240 s deposition time, linear range between 5 and 300 μg L−1, and adequate recovery values (96–104%) for spiked samples. This analytical method shows great promise for on-site trace metal determination in fuel bioethanol once there is no requirement for sample treatment or electrode modification.  相似文献   

10.
A method for the direct determination (without sample pre-digestion) of microelements in fruit juice by inductively coupled plasma optical emission spectrometry has been developed. The method has been optimized by a 23 factorial design, which evaluated the plasma conditions (nebulization gas flow rate, applied power, and sample flow rate). A 1:1 diluted juice sample with 2% HNO3 (Tetra Packed, peach flavor) and spiked with 0.5 mg L− 1 of Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Sn, and Zn was employed in the optimization. The results of the factorial design were evaluated by exploratory analysis (Hierarchical Cluster Analysis, HCA, and Principal Component Analysis, PCA) to determine the optimum analytical conditions for all elements. Central point condition differentiation (0.75 L min− 1, 1.3 kW, and 1.25 mL min− 1) was observed for both methods, Principal Component Analysis and Hierarchical Cluster Analysis, with higher analytical signal values, suggesting that these are the optimal analytical conditions. F and t-student tests were used to compare the slopes of the calibration curves for aqueous and matrix-matched standards. No significant differences were observed at 95% confidence level. The correlation coefficient was higher than 0.99 for all the elements evaluated. The limits of quantification were: Al 253, Cu 3.6, Fe 84, Mn 0.4, Zn 71, Ni 67, Cd 69, Pb 129, Sn 206, Cr 79, Co 24, and Ba 2.1 µg L− 1. The spiking experiments with fruit juice samples resulted in recoveries between 80 and 120%, except for Co and Sn. Al, Cd, Pb, Sn and Cr could not be quantified in any of the samples investigated. The method was applied to the determination of several elements in fruit juice samples commercialized in Brazil.  相似文献   

11.
Based on the poly(propylene glycol)400 (PPG400)–salt aqueous two-phase system (ATPS), a green, economical and effective sample pretreatment technique coupled with high performance liquid chromatography was proposed for the separation and determination of sulfamethoxazole (SMX). The extraction yield of SMX in PPG400–salt ATPS is influenced by various factors, including the salt species, the amount of salt, pH, and the temperature. Under the optimum conditions, most of SMX was partitioning into the polymer-rich phase with the average extraction efficiency of 99.2%, which may be attributed to the hydrophobic interaction and salting-out effect. This extraction technique has been successfully applied to the analysis of SMX in real water samples with the recoveries of 96.0–100.6%, the detection limits of 0.1 μg L−1, and the linear ranges of 2.5–250.0 μg L−1.  相似文献   

12.
A simple and sensitive method based on dispersive liquid‐liquid microextraction (DLLME) in conjunction with high performance liquid chromatography‐diode array detection (HPLC‐DAD) has been developed for the quantitative analysis of patulin in apple juice and concentrate samples. The effect of extraction and disperser solvent (nature and volume), pH of sample solution, extraction time and extraction temperature was investigated. Under the optimal conditions the linear dynamic range of patulin was from 8.0 to 40.0 μg L‐1 with a correlation coefficient of 0.9993 and a detection limit of 4.0 μg L‐1. The relative standard deviation (RSD) was less than 5.9% (n = 5) and the recovery values were in the range of 94‐97%. Finally the proposed method was successfully applied for the analysis of patulin in apple juice and concentrate samples.  相似文献   

13.
1H NMR spectroscopy was applied to the quantitative determination of malic and citric acids in apple, apricot, pear, kiwi, orange, strawberry and pineapple juices. Aspartic acid was studied as a potential interference. The effect of the sample pH on the chemical shifts of signals from malic, citric and aspartic acids was examined and a value of 1.0 was selected to carry out the determination. Integration of NMR signals at 2.89-2.95 and 3.00-3.04 ppm were used for calculating the concentration of malic and citric acids, respectively. At this pH the integrated signals were not overlapped. Sodium 3-(trimethylsilyl)tetradeuteropropionate (TSP) was used as an internal reference. The obtained results applying NMR procedures to analyze the juices from different fruits were compared to those obtained using enzymatic methods and both were in close agreement. The intra- and inter-day repeatability was tested for apple juice (7.86 g l−1 malic acid, 0.32 g l−1 citric acid) and apricot juice (5.06 g l−1 malic acid, 4.79 g l−1 citric acid) obtaining coefficients of variation lower than 3.4% for intra-day measures (n = 10) and lower than 3.8% for inter-day measures (n = 20).  相似文献   

14.
A procedure for light and heavy crude oils digestion by microwave-induced combustion (MIC) is proposed for the first time for further rare earth elements (REE) determination by inductively coupled plasma mass spectrometry (ICP-MS) equipped with an ultrasonic nebulizer (USN). Samples of crude oil (API density of 10.8–23.5, up to 250 mg) were inserted in polycarbonate capsules and combusted using 20 bar of oxygen and 50 μL of 6 mol L−1 ammonium nitrate as igniter. Nitric acid solutions (1–14.4 mol L−1) were evaluated for analyte absorption and a reflux step was applied after combustion (5 min of microwave irradiation at 1400 W) in order to achieve better analyte recoveries. Accuracy was evaluated using a spiked sample and also by comparison of results obtained by microwave-assisted digestion combined to ultraviolet radiation (MW–UV) and by neutron activation analysis (NAA). Using 3 mol L−1 HNO3, quantitative recoveries (better than 97%) were obtained for all analytes. Blank values were always negligible. Agreement was higher than 96% for La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y by comparison of results with those obtained by MW–UV and by NAA (only for La, Ce, Nd, Sm, and Yb). Residual carbon content in digests using MIC was always below 1%. As an advantage over conventional procedures for crude oil digestion, using MIC, it was possible to use diluted acid as absorbing solution, obtaining better limits of detection and avoiding interferences in REE determination by USN–ICP-MS.  相似文献   

15.
Hexanal and heptanal are endogenous aldehydes coming from membrane lipid oxidation, found in lung cancer patients’ blood, and suggested as lung tumor biomarkers. Here the urinary matrix was investigated instead of blood and the difficulties related to the determination of endogenous substances in biological matrices were faced by developing an external calibration HS-SPME/GC/MS method. The methodology was validated according to international validation procedures and it was verified analyzing unknown biological samples from cancer patients and healthy subjects. Percentage accuracy and precision, ranging from −11.25 to 10.85% and from 0.45 to 4.46%, respectively, were obtained, together with limits of detection (LODs) and lower limits of quantification (LLOQs) of 0.11 and 0.23 pg μL−1 for hexanal and of 0.10 and 0.21 pg μL−1 for heptanal. Analytes percentage recoveries (66.3%, hexanal and 70.5%, heptanal) and stability were evaluated. No analytes degradation was found at room temperature, while the remarkable analytes loss found after 1 month storage suggests analyzing biological samples within a week from storage. Results coming from the analysis of unknown biological samples showed no evident differences of heptanal urinary excretion between lung cancer patients and healthy subjects (0.22–0.95 and 0.21–0.69 pg μL−1, respectively), while hexanal urinary concentrations in cancer patients (0.24–4.36 pg μL−1) were slightly higher than those found in control group ones (0.23–1.26 pg μL−1). The obtained results highly suggest to do further investigations in order to collect statistically significant biological data to discriminate between the pathological state of lung cancer patients and physiological conditions of healthy subjects, using the simple, rapid and cheap method here reported for the quantification of urinary aldehydes.  相似文献   

16.
Liquid-phase microextraction (LPME) based on polypropylene hollow fibers was evaluated for the extraction of the post-harvest fungicides thiabendazole (TBZ), carbendazim (CBZ) and imazalil (IMZ) from orange juices. Direct LPME was performed without any sample pretreatment prior to the extraction, using a simple home-built equipment. A volume of 500 μL of 840 mM NaOH was added to 3 mL of orange juice in order to compensate the acidity of the samples and to adjust pH into the alkaline region. Analytes were extracted in their neutral state through a supported liquid membrane (SLM) of 2-octanone into 20 μL of a stagnant aqueous solution of 10 mM HCl inside the lumen of the hollow fiber. Subsequently, the acceptor solution was directly subjected to analysis. Capillary electrophoresis (CE) was used during the optimization of the extraction procedure. Working under the optimized extraction conditions, LPME effectively extracted the analytes from different orange juices, regardless of different pH or solid material (pulp) present in the sample, with recoveries that ranged between 17.0 and 33.7%. The analytical performance of the method was evaluated by liquid chromatography coupled with mass spectrometry (LC/MS). This technique provided better sensitivity than CE and permitted the detection below the μg L−1 level. The relative standard deviations of the recoveries (RSDs) ranged between 3.4 and 10.6%, which are acceptable values for a manual microextraction technique without any previous sample treatment, using a home-built equipment and working under non-equilibrium conditions (30 min extraction). Linearity was obtained in the range 0.1–10.0 μg L−1, with r = 0.999 and 0.998 for TBZ and IMZ, respectively. Limits of detection were below 0.1 μg L−1 and are consistent with the maximum residue levels permitted for pesticides in drinking water, which is the most restrictive regulation applicable for these kinds of samples. It has been demonstrated the suitability of three-phase LPME for the extraction of pesticides from citrus juices, suppressing any pretreatment step such as filtration or removal of the solid material from the sample, that may potentially involve a loss of analyte.  相似文献   

17.
Lu Q  Wu P  Collins GE 《Electrophoresis》2007,28(19):3485-3491
Rapid and quantitative determination of sodium monofluoroacetate in diluted fruit juices (dilution 1:9 v/v in deionized water) and tap water was performed by microchip CE, using contactless conductivity detection. A separation buffer consisting of 20 mM citric acid and histidine at pH 3.5 enabled the detection of the monofluoroacetate (MFA) anion in diluted apple juice, cranberry juice, and orange juice without lengthy sample pretreatments. The analyte was very well separated from interfering anionic species present in juices and tap water. LODs in diluted juices and tap water were determined to be 125, 167, 138, and 173 microg/L for tap water, apple juice, cranberry juice, and orange juice, respectively, based upon an S/N of 3:1. Taking into account the dilution factor, the LODs for juice samples range from 1 to 2 mg/L, which is adequate for monitoring the toxicity of MFA in these juice beverages and tap water. The calibration curves for MFA in diluted fruit juices were linear over the range of 500 microg/L to 80 mg/L. The total analysis time for detecting the MFA anion in fruit juices was less than 5 min, which represents a considerable reduction in analysis time compared to other analytical methods currently used in food analysis.  相似文献   

18.
For this work, thirteen types of fruit juices (orange, pineapple, peach, apple, multifruit, mango, strawberry, tomato, pear, mandarin, grape, banana and grapefruit) were selected to develop an analytical method for the analysis of 53 pesticides by direct injection in LC-MS/MS. The preparation of the samples was very simple: an aliquot of the juice was centrifuged and it was ten-times diluted prior to analysis, which allowed reducing considerably the time and cost of the analyses. Besides, dilution of the samples permits reducing the amount of matrix going into the system, and thus, decreasing the matrix effects, so common in this type of commodities, opening the possibility to perform quantification with solvent based standards. Validation of the method was carried out in accordance with EU guidelines. Calibration curves covering three orders of magnitude were performed, and they were linear over the concentration range studied for all the matrices (from 0.1 to 100 μg L−1). Practical limits of quantification were in the low μg L−1 range, far below the maximum residue levels (MRLs) of the EU regulations, which do not set specific MRLs for juices, and in this cases of processed food, MRLs of the raw product are applied. Repeatability of the instrumental method was studied in all matrices, obtaining good intra- and inter-day relative standard deviations (RSDs). The proposed method was applied to 106 real fruit juice samples purchased in different local markets during a one-year survey in order to validate the suitability for routine analysis. 43% of the analysed samples gave positive results (higher than the practical limits of quantification).  相似文献   

19.
The fast sequential multi-element determination of Ca, Mg, K, Cu, Fe, Mn and Zn in plant tissues by high-resolution continuum source flame atomic absorption spectrometry is proposed. For this, the main lines for Cu (324.754 nm), Fe (248.327 nm), Mn (279.482 nm) and Zn (213.857 nm) were selected, and the secondary lines for Ca (239.856 nm), Mg (202.582 nm) and K (404.414 nm) were evaluated. The side pixel registration approach was studied to reduce sensitivity and extend the linear working range for Mg by measuring at wings (202.576 nm; 202.577 nm; 202.578 nm; 202.580 nm; 202.585 nm; 202.586 nm; 202.587 nm; 202.588 nm) of the secondary line. The interference caused by NO bands on Zn at 213.857 nm was removed using the least-squares background correction. Using the main lines for Cu, Fe, Mn and Zn, secondary lines for Ca and K, and line wing at 202.588 nm for Mg, and 5 mL min− 1 sample flow-rate, calibration curves in the 0.1–0.5 mg L− 1 Cu, 0.5–4.0 mg L− 1 Fe, 0.5–4.0 mg L− 1 Mn, 0.2–1.0 mg L− 1 Zn, 10.0–100.0 mg L− 1 Ca, 5.0–40.0 mg L− 1 Mg and 50.0–250.0 mg L− 1 K ranges were consistently obtained. Accuracy and precision were evaluated after analysis of five plant standard reference materials. Results were in agreement at a 95% confidence level (paired t-test) with certified values. The proposed method was applied to digests of sugar-cane leaves and results were close to those obtained by line-source flame atomic absorption spectrometry. Recoveries of Ca, Mg, K, Cu, Fe, Mn and Zn in the 89–103%, 84–107%, 87–103%, 85–105%, 92–106%, 91–114%, 96–114% intervals, respectively, were obtained. The limits of detection were 0.6 mg L− 1 Ca, 0.4 mg L− 1 Mg, 0.4 mg L− 1 K, 7.7 µg L− 1 Cu, 7.7 µg L− 1 Fe, 1.5 µg L− 1 Mn and 5.9 µg L− 1 Zn.  相似文献   

20.
A specific polyclonal anti-norfloxacin antibody was obtained, and a sensitive indirect competitive enzyme-linked immunosorbent assay (icELISA) was developed for determining trace amounts of norfloxacin in various waters. Good linearity was achieved in the range from 0.1 to 10 μg L−1. The average IC50 value was determined to be 2.2 μg L−1 and the limit of detection was 0.016 μg L−1 at a signal-to-noise ratio of 3 in phosphate-buffered saline buffer. Recoveries of norfloxacin at various spiking levels ranged from 74 to 105% in groundwater, surface water, treated and untreated wastewater samples, with relative standard deviations of 3–5%. The assay was applied for determining norfloxacin in municipal wastewater, surface water, and groundwater collected in a metropolis of China. Raw wastewater samples were only submitted to filtration and pH adjustment while the other water samples were pre-concentrated by solid phase extraction prior to the icELISA assay. Good agreement of the results obtained by the icELISA and liquid chromatography tandem mass spectrometry further confirmed the reliability and accuracy of the icELISA for rapid detection of norfloxacin in waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号