首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polyacetylated 5,6,7,8-Tetrahydro-D - and L -neopterins. A Special Case of N(5)-Alkylation of 5,6,7,8-Tetrahydroneopterins Improved conditions are reported for the preparation of the earlier described (6R)- and (6S)-1′-O,2′-O,3′-O,2-N,5-pentaacetyl-5,6,7,8-tetrahydro-L -neopterins, one of which could be obtained as pure crystals. Its structure, determined by X-ray-diffraction analysis, corresponds to the (6R)-enantiomer. The method has also been used to make the corresponding D -diastereoisomers. Further acetylation of (6RS)-1′-O,2′-O,3′-O,2-N-tetraacetyl-5,6,7,8-tetrahydro-D -neopterin under drastic conditions yields a mixture of several polyacetylated D -neopterin derivatives and a polyacetylated ethyl-tetrahydro-D -neopterin which was isolated in crystalline form and established by X-ray-diffraction analysis to be (6R)-1′-O,2′-O,3′-O,4-O,2-N,2-N,8-heptaacetyl-5-ethyl-5,6,7,8-tetrahydro-D -neopterin.  相似文献   

2.
The preparation and the CD spectra of optically pure (+)-trans-μ-[(1R,4S,5S,6R,7R,8S)-C,5,6,C -η : C,7,8,C-η-(5,6,7,8-tetramethylidene-2-bicyclo [2.2.2]octanone)]bis(tricarbonyliron) ((+)- 7 ) and (+)-tricarbonyl[(1S,4S,5S,6R)-C-5,6,C-η-(5,6,7,8,-tetramethylidene-2-bicyclo[2.2.2]octanone)]iron ((+)- 8 ), and of its 3-deuterated derivatives (+)-trans-μ-[(1R,3R,4S,5S,6R,7R,8S)-C,5,6,C-η : C,7,8,C-η-5,6,7,8-tetramethylidene(3-D)-2-bicyclo[2.2.2]-(octanone)]bis(tricarbonyliron) ((+)- 11 ) and (+)-tricarbonyl[(1S,3R,4S,5S,6R)-C-5,6,C- η-(5,6,7,8-tetramethylidene(3-D)-2-bicyclo[2.2.2]octanone)]iron ((+)- 12 ) are reported. The chirality in (+)- 7 and (+)- 8 is due to the Fe(CO)3 moieties uniquely. The signs of the Cotton effects observed for (+)- 7 and (+)- 8 obey the octant rule (ketone n→π*CO transition). Optically pure (?)-3R-5,6,7,8-tetramethylidene(3-D)-2-bicyclo[2.2.2]octanone ((?)- 10 ) was prepared. Its CD spectrum showed an ‘anti-octant’ behaviour for the ketone n→π*CO transition of the deuterium substituent. The CD spectra of the alcoholic derivatives (?)-trans-μ-[(1R,2R,4S, 5S,6R,7R,8S)-C,5,6,C-η : C,7,8,C- η-(5,6,7,8-tetramethylidene-2-bicyclo[2.2.2]octanol)]bis(tricarbonyliron) ((?)- 2 ) and (?)-tricarbonyl- [(1S,2R,4S,5S,6R)- C,5,6,C- η-(5,6,7,8-tetramethylidene-2-bicyclo[2.2.2]octanol)]iron ((?)- 3 ) and of the 3-denterated derivatives (?)- 5 and (?)- 6 are also reported. The CD spectra of the complexes (?)- 2 , (?)- 3 , (+)- 7 , and (+)- 8 were solvent and temperature dependent. The ‘endo’-configuration of the Fe(CO)3 moiety in (±)- 8 was established by single-crystal X-ray diffraction.  相似文献   

3.
The reactions of 1, 1, 3-trichloro-1-propene and also 1, 1, 1-trichloro-2-propene with acetoacetic ester gave α-(γ, γ-dichlorallyl)acetoacetic ester (I). In the reactions with aniline and o- and p-toluidines, the corresponding α-(γ, γ-dichloroallyl)-β-arylamino-crotonic esters were produced, thermal cyclization of which gave 2-methyl-3-(γ, γ-dichloroallyl)-4-hydroxyquinoline (II) and its 6CH3- (III) and 8CH3- (IV) homologs. With phosphorus oxychloride, II–IV gave the corresponding 4-chloro-substituted quinolines (V–VII); with concentrated sulfuric acid, II–VII were converted into the corresponding β-quinolinylpropionic acids VIII–XIII.  相似文献   

4.
11 and 12 molar reactions of dioxouranium(VI) acetate dihydrate with the monobasic bidentateSchiff bases,o-HOC6H4CH=NR oro-HOC10H6CH=NR (R=C2H5,n-C3H7,n-C4H9 or C6H5) and bibasic tridentateSchiff bases,o-HOC6H4CH=NR(OH) oro-HOC10H6CH=NR(OH) (R=–CH2CH(CH3)- or —CH2CH2CH2–) have been studied and derivates of the type UO2(OAc)2(SBH), UO2(OAc)2(SBH)2, UO2(OAc)2(SBH 2) and UO2(OAc)2(SBH 2)2 (whereSBH andSBH 2 represent monobasic bidentate and bibasic tridentateSchiff base molecules respectively) have been isolated. These have been characterized by elemental analysis, conductance measurements and IR spectral studies.
UO2 2+-Komplexe von Schiff-Basen. VII. Uranylacetat-Komplexe mit monobasischen zweizähnigen und bibasischen dreizähnigen Schiff-Basen
Zusammenfassung Es wurden in 1:1- und 1:2-molaren Reaktionen von UO2(OAc)2·2H2O mitSchiff-Basen (L) Komplexe des Typs UO2(OAc)2 L bzw. UO2(OAc)2 L 2 isoliert. Die Komplexe wurden mittels Elementaranalyse, Leitfähigkeitsmessungen und IR-Spektren untersucht.
  相似文献   

5.
The synthesis of (-H)(-2-RRNCO2)Os3(CO)10 (R=R=CH3 2a; R=R=CH2CH3,2b; R=CH3, R=CH2CH3,2c) and their cyclic analogs (-H)(-2--CO2)Os3(CO)10(n=42d,n=5,2e) from carbon dioxide, secondary amine, and Os3(CO)10(CH3CN)2 (1) are reported. A solid-state structure of2c reveals a bonding mode for the carbamato ligand very similar to that observed for related carboxylato complexes. Compound2c crystallizes in the orthorombic space group Pbca witha=9.136 (3),b=15.310 (4) andc=30.361 (5) Å;V=4247 Å3,Z=8. Least-squares refinement of 2405 observed reflections gave a final agreement factor ofR=0.043 (R w =0.043). The reactivity of the complexes2a–2e was examined. Compound2c or2b give good yields of the cluster derivatives (-H)(-X)Os3(CO)10 (X=Cl,3; X=OCH3,4; X=N(CH3)2,7) when reacted with HX. Reaction of2a with P(CH3)3 at 68°C gives good yields of the otherwise difficult to obtain 1,1,2-(P(CH3)3)3Os3(CO)9 (5). Evidence is presented that suggests that2a–2e form by oxidative addition of preformed carbamic acids to1.  相似文献   

6.
Shigeo Sugiyama 《Tetrahedron》2007,63(48):12047-12057
Intramolecular acyl transfer of (R)-5-(α-methylbenzyl)amino-1,3-dioxan-2-one (2) by treatment with DBU in CD2Cl2, CDCl3, C6D6, CD3CN, CD3NO2, DMSO-d6, DMF, THF-d8, iPrOH, and tBuOH at room temperature afforded (4SR)-4-hydroxymethyl-3-α-methylbenzyl-2-oxazolidinone [(4S)-3] in moderate to quantitative yields with 58-94% de via an asymmetric desymmetrization process. Treatment of 2 with DBU and Cs2CO3 in MeOH and EtOH gave (4S)-3 and (4R)-3 without diastereoselectivities. Acidic treatment of 2 using HCO2H, AcOH, EtCO2H, iPrCO2H, tBuCO2H, and C6F5OH in CDCl3 gave (4S)-3 in moderate diastereoselectivities (26-52% de). First-order kinetics were observed in the reaction of 2 to (4S)-3 with DBU in CDCl3 and THF-d8.  相似文献   

7.
5-Amino-lH-1,2,4-triazolylcarbothiohydrazides gave β and γ-oxo-esters in boiling ethanol [1,2,4]triazolo- [1,5-d][1,2,4,6]tetrazepine-5-thiones 3 . Analogously ethyl 2-oxocyclohexanecarboxylate provided a mixture of two diastereomeric spiro derivatives 5 and 6 . At 130°, 2-acetonyl-5-methyl-4,5-dihydro-1,3,4-oxadiazole-5-thione ( 8 ) was formed. Ring closure of 3e (R1 = CH3, R2 = CH2CH2COOEt, Q = morpholino) lead to the isomeric pyrrolo[2,1-g][1,2,4]triazolo[1,5-d][1,2,4,6]tetrazepin-8(11H)-one ( 12 ) and pyrrolo[1,2-f][1,2,4]triazolo-[1,5-d][1,2,4,6]tetrazepin-10(7H)-one ( 13 ) derivatives representing two new ring systems.  相似文献   

8.
A novel and simple process for the preparation of enantiomerically pure (SS)-benzenesulfinamide (SS)-3a, (SS)-p-toluenesulfinamide (SS)-3b, (SS)-p-chloro-benzenesulfinamide (SS)-3c and (SS)-p-fluorobenzenesulfinamide (SS)-3d has been developed. The treatment of arylsulfinyl chlorides with (R)-N-benzyl-1-phenylethanamine in the presence of excess triethylamine gave diastereomeric mixtures of N-benzyl-N-(1-phenylethyl)-arylsulfinamides 1, which underwent spontaneous crystallization to furnish diastereomerically pure (R,SS)-N-benzyl-N-(1-phenylethyl)-arylsulfinamides (R,SS)-1a-1d in 28%, 29%, 27% and 31% yields, respectively. The diastereomerically pure compounds (R,SS)-1 were then converted into four enantiopure (RS)-methyl arylsulfinates (RS)-2, and finally into four enantiopure (SS)-arylsulfinamides (SS)-3 in good yields.  相似文献   

9.
Aervalanata possesses various useful medicinal and pharmaceutical activities. Phytochemical investigation of the plant has now led to the isolation of a new 2α,3α,15,16,19-pentahydroxy pimar-8(14)-ene diterpenoid (1) together with 12 other known compounds identified as β-sitosterol (2), β-sitosterol-3-O-β-D-glucoside (3), canthin-6-one (4), 10-hydroxycanthin-6-one (aervine, 5), 10-methoxycanthin-6-one (methylaervine, 6), β-carboline-1-propionic acid (7), 1-O-β-D-glucopyranosyl-(2S,3R,8E)-2-[(2′R)-2-hydroxylpalmitoylamino]-8-octadecene-1,3-diol (8), 1-O-(β-D-glucopyranosyl)-(2S,3S,4R,8Z)-2-[(2′R)-2′-hydroxytetracosanoylamino]-8(Z)-octadene-1,3,4-triol (9), (2S,3S,4R,10E)-2-[(2′R)-2′-hydroxytetracosanoylamino]-10-octadecene-1,3,4-triol (10), 6′-O-(4″-hydroxy-trans-cinnamoyl)-kaempferol-3-O-β-D-glucopyranoside (tribuloside, 11), 3-cinnamoyltribuloside (12) and sulfonoquinovosyldiacylglyceride (13). Among these, six compounds (813) are reported for the first time from this plant. Cytotoxicity evaluation of the compounds against five cancer cell lines (CHO, HepG2, HeLa, A-431 and MCF-7) shows promising IC50 values for compounds 4, 6 and 12.  相似文献   

10.
Yuji Takashima 《Tetrahedron》2010,66(1):197-2519
A general approach to the (S)- and (R)-isoflavans was invented, and efficiency of the method was demonstrated by the synthesis of (S)-equol ((S)-3), (R)-sativan ((R)-4), and (R)-vestitol ((R)-5). The key step is the allylic substitution of (S)-6a (Ar1=2,4-(MeO)2C6H3) and (R)-6b (Ar1=2,4-(BnO)2C6H3) with copper reagents derived from CuBr·Me2S and Ar2-MgBr (7a, Ar2=4-MeOC6H4; 7b, 2,4-(MeO)2C6H3; 7c, 2-MOMO-4-MeOC6H3), furnishing anti SN2′ products (R)-8a and (S)-8b,c with 93-97% chirality transfer in 60-75% yields. The olefinic part of the products was oxidatively cleaved and the Me and Bn groups on the Ar1 moieties was then removed. Finally, phenol bromide 9a and phenol alcohols 9b,c underwent cyclization with K2CO3 and the Mitsunobu reagent to afford (S)-3 and (R)-4 and -5, respectively.  相似文献   

11.
Zusammenfassung -Substituierte -Acylvinylphosphonate3 mitE-Konfiguration [R 2CO-CH=C(R 1)-P(O)(OR)2], werden in guten Ausbeuten durchWittig-Reaktion von Acylphosphonsäureestern1 [R 1CO-P(O)(OR)2,R 1=Alkyl oder Aryl] mit (2-Oxoalkyliden)triphenylphosphoranen2 [R 2CO-CH=PPh 3,R 2=Alkyl, O-Alkyl oder CH2 X (X=Br, OMe, CO2 Et)] erhalten.
A convenient route to -substituted dialkyl (E)-3-oxo-1-alkenylphosphonates
-Substituted dialkyl (E)--acylvinylphosphonates [R 2CO-CH=C(R 1)-P(O)(OR)2,3], are easily obtained in good yields byWittig-reaction of dialkyl acylphosphonates1 [R 1CO-P(O)(OR)2,R 1=alkyl or aryl) with 2-oxoalkylidene triphenylphosphoranes2 [R 2CO-CH=PPh 3,R 2=alkyl, O-alkyl and CH2 X (X=Br, OMe, CO2 Et)].
  相似文献   

12.
The reactions of GeCl4, GeBr4, and MeGeCl3 with O-trimethylsilyl derivatives of N,N-disubstituted amides of 2-hydroxycarboxylic acids afforded pentacoordinate and hexacoordinate neutral (O,O)-mono- and (O,O)-bischelates. The reactions of glycolic acid derivatives with GeX4 produced bischelates X2Ge[OCH2C(O)NR2R3]2 7a,c,d (X = Cl, R2 = R3 = Me (a), (CH2)5 (c), (CH2CH2)2O (d)) and 8a (X = Br). By contrast, the reactions of lactic and mandelic acid derivatives with GeCl4 and MeGeCl3 gave monochelates Cl3Ge[OCH(R1)C(O)NR2R3] (S)-9a–c (R1 = Me) and Cl2MeGe[OCH(R1)C(O)NR2R3] 10a (R1 = H), (S)-11a,b (R1 = Me), and (S)-12a (R1 = Ph) (R2R3 = (CH2)4 (b)), respectively. According to the X-ray diffraction data, the Ge atom in bischelates 7c,d and 8a has a coordination number 6, and its coordination polyhedron can be described as a slightly distorted octahedron. In monochelates (S)-9a-c, 10a, (S)-11a,b, and (S)-12a, the Ge atom has a coordination number 5, and its coordination polyhedron can be described as a trigonal bipyramid with two halogen atoms or one halogen atom and one ethereal oxygen atom in equatorial positions and the halogen atom and the amide oxygen atom in the axial positions. The bonds in the axial positions are somewhat longer than the corresponding bonds in tetracoordinate Ge compounds.  相似文献   

13.
Machiko Ono  Yuki Shida 《Tetrahedron》2007,63(41):10140-10148
(±)-(4,5-anti)-4-Benzyloxy-5-hydroxy-(2E)-hexenoic acid 6 was subjected to δ-lactonization in the presence of 2,4,6-trichlorobenzoyl chloride and pyridine to give the α,β-unsaturated-δ-lactone congener (±)-7 (87% yield) accompanied by trans-cis isomerization. This δ-lactonization procedure was applied to the chiral synthesis of (+)-(4S,5R)-7 or (−)-(4R,5S)-7 from the chiral starting material (+)-(4S,5R)-6 or (−)-(4R,5S)-6. Deprotection of the benzyl group in (+)-(4S,5R)-7 or (−)-(4R,5S)-7 by the AlCl3/m-xylene system gave the natural osmundalactone (+)-(4S,5R)-5 or (−)-(4R,5S)-5 in good yield, respectively. Condensation of (−)-(4R,5S)-5 and tetraacetyl-β-d-glucosyltrichloroimidate 22 in the presence of BF3·Et2O afforded the condensation product (−)-8 (97% yield), which was identical to tetra-O-acetylosmundalin (−)-8 derived from natural osmundalin 9.  相似文献   

14.
Preparation of (6RS)Tetra- and (6RS)-Pentaacetyl-5,6,7,8-tetrahydro-L-biopterines Boiling of (6RS) l′-O,2′-O,2-N-triacetyl-5,6,7,8-tetrahydro-L-biopterine in acetic anhydride as described in [2], leads to a mixture of the diastereoisomeric (6R)- and (65)-l′-O,2′-O,2-N-,5,8-pentaacetyl-5,6,7,8-L,-biopterines. One of the diastereoisomers can be obtained as pure crystals. It corresponds to the pentaacetate of the natural (6R)- or (6S).,5,6,7,8-tetrahydro-L-biopterine. For the preparation of the earlier described (6RS)- and (6S)-tetraacetyl-tetrahydro-L-biopterines [2] improved conditions are reported.  相似文献   

15.
Reaction of 1,3-diaryltriazenes (R-C6H4-NN-(NH)-C6H4-R, R = OCH3, CH3, H, Cl, NO2 at the para position) with [Rh(PPh3)3Cl] in ethanol in the presence of a base (NEt3) affords a family of yellow complexes (1-R) containing a PPh3, two de-protonated triazenes coordinated as bidentate N,N-donors, and an aryl (C6H4-R) fragment coordinated in the η1-fashion. A similar reaction in toluene yields a group of reddish-orange complexes (2-R) containing a PPh3, two N,N-coordinated triazenes, and a chloride. Structures of the 1-CH3 and 2-CH3 complexes have been determined by X-ray crystallography. All the 1-R and 2-R complexes are diamagnetic, and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. The 1-R and 2-R complexes also fluoresce in the visible region under ambient condition while excited at around 400 nm. Cyclic voltammetry on these complexes shows a Rh(III)-Rh(IV) oxidation (within 0.76-1.68 vs. SCE), followed by an oxidation of the coordinated triazene ligand (except the R = NO2 complexes). An irreversible reduction of the coordinated triazene is also observed for all the complexes below −0.96 V vs. SCE. In the 1-R and 2-R complexes potential of the Rh(III)-Rh(IV) oxidation correlates linearly with the electron-withdrawing nature of the para-substituent (R).  相似文献   

16.
The preparation of ylides of the general structure is described. Thermolysis of 14a (R = CH3, R' = H, Ar = C6H5) gave dimethylamine and 2,4-dimethyl-6-phenyl-s-triazine. Thermolysis of ylides 14b (R = C6H5; R' = CH3, Ar = C6H5) and 14c (R = C6H5, R' = CH3, Ar = p-tolyl) gave dimethylamine, ArCH = NCH3 and 1-methyl-2-Ar-4,6-diphenyl-1,2-dihydro-s-triazines ( 19a,b ). Triazines 19a and 19b were also prepared by condensation of N-methylbenzamidine with benzaldehyde and p-tolualdehyde, respectively. Thermolysis of 14d (R = C6H5, R1 = CH2C6H5,Ar = C6H5) gave 1-benzyl-2,4,6-triphenyl-1,2-dihydro-s-triazine ( 19c ) and N-benzylidenebenzylamine. Mechanistic aspects of these reactions are discussed.  相似文献   

17.
Summary Reaction of acyclic (B 1–3) and cyclic (R 4–5)BMMA (=N-[b is-(methylthio)-methylene]-amino) reagents withGewald-type thiophene derivatives (2,3) led to annelation of pyrimidine moieties. Thus, linear thiazolo- or thiazino- and pyrrolo-, pyrido- or azepino-fused thiopyrano[4,3:4,5]thieno-[2,3-d]pyrimidines (5 and6) as well as the angular imidazo-fused thiopyrano[4,3:4,5]thieno-[2,3-d]pyrimidine8 were easily obtained from one-pot reactions in good yields.on leave from Chemistry Department, Minia University, El-Minia, Egypt  相似文献   

18.
Chiral tetrahydropentalenes (3aR,6aR)-1 have been prepared and used as ligands in the Rh-catalyzed 1,4-addition of 1-alkenylboronic acids to cyclic enones 5. It has been discovered that the stereochemistry of the reaction was controlled by the steric properties of the aryl groups in 1 rather than their electronic nature. In the vinylation with (E)-2-phenylethenylboronic acid 5, ligands (3aR,6aR)-1 provided enantioselectivity up to 87% ee and gave high yields of ethenylketones 6 in the presence of 1 (6.6 mol %). The configuration of all ketone products obtained with (3aR,6aR)-1 is (S). Rh-catalyzed reaction of cyclopentenone 4a and (Z)-propenylboronic acid 7 in the presence of ligands (3aR,6aR)-1 yielded at 50 °C an inseparable mixture of (Z)- and (E)-ketones 8 with (Z)-8 as the major product and both in only moderate enantiomeric excess.  相似文献   

19.
Abstract

Two kinds of ganglioside GM4 thioanalogs having different fatty acyl groups at the ceramide moiety, (2S, 3R, 4E)-1-O-[3-S-(5-acetamido-3,5-di-deoxy-D-glycero-α-D-galacto-2-nonulopyranosylonic acid)-3-thio-β-D-galacto-pyranosyl]-2-octadecanamido (or -tetracosanamido)-4-octadecene-1,3-diol (12, 13), have been synthesized. Condensation of the trichloroacetimidate 7, derived from 1,2,4,6-tetra-O-acetyl-3-S-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-3-thio-β-D-galactopyranose (6) by selective 1-O-deacetylation and subsequent trichloroacetimidation, with (2S, 3R, 4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (4), gave the coupling product (8), which was converted into the title compounds via selective reduction of the azide group, condensation with fatty acids, and removal of the protecting groups.  相似文献   

20.
The photooxygenation of (4R,4aS,7R)-4,4a,5,6,7,8-hexahydro-4,7-dimethyl-3H-2-benzopyran ( 16 ) was performed in (i) MeOH, (ii) acetaldehyde, and (iii) acetone at ?78°. The products obtained respectively were (i) (2R)-2-[(1S,4R)-4-methyl-2-oxocyclohexyl]propyl formate ( 17 ; 72% yield), (ii) 17 (54.5%), (1R,4R,4aS,7R)-3,4,4a,5,6,7-hexahydro-4,7-dimethyl-1H-2-benzopyran-2-yl hydroperoxide ( 19 ; 16.7%), a 12:1 ratio of (3R,4aR,7R,7aS,10R,11aR)-7,7a,8,9,10,11-hexahydro-3,7,10-trimethyl-6H-[2]benzopyrano[1,8a-e]-1,2,4-trioxane ( 20 ) and its C(3)-epimer 21 (17%), together with evidence for the 1,2-dioxetane ( 22 ) originating from the addition of dioxygen to the re-re face of the double bond of 16 , and iii) unidentified products and traces of 22 . Addition of trimethylsilyl trifluoromethanesulfonate (Me3SiOTf) to the acetone solution of 16 after photooxygenation afforded (4aR,7R,7aS,10R,11aR)-7,7a,8,9,10,11-hexahydro-3,3,7,10-tetramethyl-6H-[2]benzopyrano[1,8a-e]-1,2,4,-trioxane ( 23 , 40%). The photooxygenation of 16 in CH2Cl2 at ?78° followed by addition of acetone and Me3SiOTf afforded 17 (11%), 23 (59%), and (4aR,7R,7aS,10R,11aR)-7,7a,8,9,10,11-hexahydro-3,3,7,10-tetramethyl-6H-[2]benzopyrano[8a,1-e]-1,2,4-trioxane ( 24 ; 5%. Repetition of the last experiment, but replacing acetone by cyclopentanone, gave 17 (16%), (4′aR,7′R,7′aS,10′R,11′aR)-7′,7′a,8′,9′,10′,11′-hexahydro-7′,10′-dimethylspiro[cyclopentane-1,3′-6′H-[2]benzopyrano[1,8a-e]-1,2,4-trixane] ( 25 ; 61%), and (4′aR,7′R,7′aS,10′R,11′aR)-7′,7′a,8′,9′,10′,11′-hexahydro-7′,10′-dimethylspiro[cyclopentane-1,3′-6′H-[2]benzopyrano[8a,1-e]-1,2,4-trixane] ( 26 , 4%). The X-ray analysis of 23 was performed, which together with the NMR data, established the structure of the trioxanes 20, 21, 24, 25 , and 26 . Mechanistic and synthesis aspects of these reactions were discussed in relation to the construction of the 1,2,4-trioxane ring in arteannuin and similar molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号