共查询到19条相似文献,搜索用时 73 毫秒
1.
2.
基于地统计学与支持向量回归的QSAR建模 总被引:4,自引:0,他引:4
基于主成分分析(PCA)、地统计学(GS)和支持向量回归(SVR), 提出了一种新的定量构效关系(QSAR)个体化预测方法——Weight-PCA-GS-SVR. 其基本思路是: 先以PCA降维并消除自变量间的信息冗余, 继以SVR经非线性主成分筛选去除与因变量无关的主成分, 再以保留主成分计算样本间的加权距离, 然后以高维GS确定公用变程; 每一个待测样本都以自身为中心从训练集中找出加权距离小于公用变程的私有k个近邻, 以SVR训练建模完成个体化预测. Weight-PCA-GS-SVR从行、列两个方向对模型进行了优化, 为自变量提供了一种新的加权方法, 为解决最优k近邻选择难题提供了新的思路, 并具有SVR原来的优点. 经3个化合物活性实例数据集验证, 新方法在所有参比模型中预测精度最高, 且明显优于文献报道结果, Weight-PCA-GS-SVR在QSAR等回归预测领域有较广泛的应用前景. 相似文献
3.
4.
基于前列腺癌检测中获取的表面增强激光解吸/离子化飞行时间质谱(SELDI-TOF-MS)数据,提出一种概率主成分分析(PPCA)联合支持向量机(SVM)的分类方法。对临床322例血清样本的质谱数据进行特征提取,以随机选取训练样本集(225例)构造SVM判别模型,对剩余样本集(97例)进行测试。采用均方根误差、识别率与预测率指标,将所构造的PPCA-SVM模型分别与偏最小二乘(Partial least squares,PLS)和PCA-SVM模型进行比较,发现PLS模型的识别率和预测率分别为90.92%和76.38%,PCA-SVM模型分别为99.23%和84.63%,而PPCA-SVM模型分别为99.01%和90.41%。因此SELDI-TOF-MS技术结合PPCA-SVM在样品分类中具有准确、重复性好等优点,为前列腺癌早期诊断提供了一种新方法。 相似文献
5.
支持向量机回归法在近红外光谱测定植物纤维原料中甲氧基含量中的应用 总被引:3,自引:0,他引:3
以26个植物纤维原料为实验材料,由20个样品作校正样品,采用径向基核函数方法对纤维原料中甲氧基含量与纤维原料样品近红外光谱进行支持向量机(SVM)回归建模.以所建SVM回归模型对6个纤维原料样品中甲氧基含量进行预测,回归模型的预测结果与采用改良的维伯克法确定的甲氧基含量的相关系数为0.977,预测样本集的标准偏差为0.43.将SVM回归模型的预测效果与PLS回归模型的预测结果进行比较,所建近红外光谱测定植物纤维原料中甲氧基含量的SVM回归模型可用于实际植物纤维原料样品的定量分析,且具有较好的分析效果. 相似文献
6.
主成分回归残差神经网络校正算法用于近红外光谱快速测定汽油辛烷值 总被引:18,自引:0,他引:18
根据汽油辛值预测体系本身的非线性特点,提出主成分回归残差神经网络校正算法(principal component regression residual artificial neural network,PCRRANN)用于近红外测定汽油辛烷值的预测模型校正,该方法给合了主成分回归算法(PC),与经典的线性校正算法(PLS(Partial Least Square),PCR, 以及非线性PLS(NPLS,Non-linear PLS)等相比,预测明显的改善,文中还讨论了PCR主成分数及训练参数对预则模可能的影响。 相似文献
7.
8.
采用线性渐变滤光片(Linear variable filter, LVF),优化设计高性能、便携式的人体血液成分近红外检测设备,研究了支持向量回归(Support vector regression, SVR)模型对人体血红蛋白(Hemoglobin, Hb)的预测能力及稳定性,以实现贫血疾病的无创诊断.无创采集100位志愿者食指前端光谱信息并划分定标集、验证集1和2.应用网格搜索方法优选惩罚参数与核函数参数c=5.28, g=0.33,用以建立稳健的SVR模型.随后,分别对验证集1和2中Hb水平进行定量分析.实验结果表明: 预测标准偏差(RMSEP) 分别为10.20 g/L和10.85 g/L,相对预测标准偏差(R-RMSEP) 为6.85%和7.48%,测量精度较高且SVR模型对不同样品的适应性较强,基本满足临床检测要求.基于SVR算法自行设计的LVF型近红外光谱检测设备在贫血症的无创诊断中有着良好的应用前景. 相似文献
9.
10.
11.
近红外光谱技术结合主成分分析法用于子宫内膜癌的诊断 总被引:3,自引:0,他引:3
应用近红外光谱技术结合化学计量学方法研究了子宫内膜癌组织近红外光谱特征提取和早期诊断的可行性. 测定了154 例子宫内膜组织切片的近红外光谱, 选取适宜的波段和光谱预处理方法进行主成分分析, 很好地区分了癌变、增生和正常子宫内膜组织切片, 并且分辨出处于不同分化期的组织切片, 为子宫内膜癌的早期诊断提供了可靠依据. 该法快速、简便, 有望发展成为一种新型的肿瘤无创诊断方法. 相似文献
12.
基于局部最小二乘支持向量机的光谱定量分析 总被引:1,自引:0,他引:1
提出了一种基于局部最小二乘支持向量机(LSSVM)的回归方法,以克服待测参数和光谱数据间的非线性。本方法首先通过欧式距离选取局部训练样本子集,然后利用该子集建立LSSVM校正模型。由于每个测试样本建模时要选取不同的训练样本,因此提出相对距离的概念用来改进高斯核函数,使LSSVM的参数对于不同的训练样本具有自调整功能。针对一批汽油样本的实验结果表明,本方法的预测精度优于常见的局部线性建模方法和全局建模方法。 相似文献
13.
《Analytical letters》2012,45(10):1286-1296
To investigate environmental effect on cultural materials, Fourier transform infrared technique (FTIR/ATR) was applied to analyze the silk aging process. Changes in chemical and conformational structures of silk fabric undergoing ultraviolet induced degradation were investigated. The IR spectra provided strong bands of photosensitive amide I, II, and III. For overlapping amide III region, both of the original and second-derivative IR spectra revealed that UV irradiation induced the structural transformation from β-sheet domain to β-turn conformation, which was supported by the increase of β-turn marker band at 1015 cm?1 associated with polyglycine. Additionally the reduced bands associated with (GlyAla)n segment at 1000 and 976 cm?1, and the decreased band at 1070 cm?1 related to β-sheet structure also illustrated the conformational transition. Furthermore, we applied a chemometric method of principal component analysis for the evaluation of silk degradation based on variations in amide I spectral region. The score plot using the first two principal components effectively summarized the general trend of silk-aging and revealed the quick degradation appeared in the initial stages (12 h and 24 h) and the 108-hr stage. This work provides a potential novel application of the infrared spectroscopy in noninvasive qualitative and quantitative investigation of silk degradation. 相似文献
14.
《Analytical letters》2012,45(15):3131-3141
ABSTRACT Principal Component Analysis (PCA) was applied to a set of physico-chemical variables obtained from 41 samples of summer orange juice, in order to reduce the number of variables. Working with the covariance matrix, three components (which explained 98.27% of the variance) were taken. With the correlation matrix, four components which explained: 85.65% of the variance were taken. With the scores corresponding to both matrixes a principal component regression (PCR) was carried out against the dependent variable of Brix grades, so as to obtain two statistical models that would allow the detection of adulterations in pure orange juice, based on dilution and later masking by the addition of sugar. The models were tested with simulated dilutions of 41 samples of juice, to assess the effectiveness of each for the detection of adulterations. Both models turned out to be equally effective, detecting adulterations starting from about 15 % of dilution. 相似文献
15.
16.
基于主成分分析和小波神经网络的近红外多组分建模研究 总被引:5,自引:0,他引:5
将小麦叶片原始光谱经过预处理后,采用主成分分析(PCA)对数据进行降维,取前3个主成分输入小波神经网络,建立了基于主成分分析和小波神经网络的近红外多组分预测模型(WNN);进一步研究了小波基函数个数的选取(WNN隐层节点数)对小波神经网络模型性能的影响,并将WNN模型与偏最小二乘法(PLS)和传统的反向传播神经网络(BPNN)模型进行了比较.结果表明,所建立的WNN模型能用于同时预测小麦叶片全氮和可溶性总糖两种组分含量,其预测均方根误差(RMSEP)分别为0.101%和0.089%,预测相关系数(R)分别为0.980和0.967.另外,在收敛速度和预测精度上,WNN模型明显优于BPNN和PLS模型,从而为将小波神经网络用于近红外光谱的多组分定量分析奠定了基础. 相似文献
17.
18.
组合偏最小二乘回归方法在近红外光谱定量分析中的应用 总被引:3,自引:1,他引:3
针对近红外光谱数据局部效应显著,变量个数多,彼此间常存在严重的复共线性,并多与样品组分含量呈非线性关系,构建一种组合非线性偏最小二乘回归(E-S-QPLSR)方法。它采用无重复采样技术(subag-ging),从训练样本中生成若干子样,然后每个子样通过二次多项式偏最小二乘回归(QPLSR),建立其子模型,并实现对训练样本因变量的定量预测,再将它们交由线性PLS算法用于计算各子模型的组合权系数。将该法应用于80个玉米样品的水组分含量与其近红外光谱的定量关系建模,效果良好,显示出很强的学习能力,所建模型的预报性能也优于其它方法。 相似文献
19.
以钼酸铵-sb^3^ -抗坏血酸为显色体系,利用rFIA(反相流动注射分析)分光光度法,对磷和硅的同时测定进行了实验研究;根据主成分回归法具有用较少的独立成分说明多个变量所提供的信息,有效降低噪声影响的特点,对实验所得数据进行了主成分回归处理,并建立起校正模型;结果表明,该模型在磷和硅的同时测定中是准确可行的。 相似文献