首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present article considers a numerical study of thermal dispersion effect on the non-Darcy natural convection over a vertical flat plate in a fluid saturated porous medium. Forchheimer extension is considered in the flow equations. The coefficient of thermal diffusivity has been assumed to be the sum of molecular diffusivity and the dispersion thermal diffusivity due to mechanical dispersion. The non-dimensional governing equations are solved by the finite element method (FEM) with a Newton–Raphson solver. Numerical results for the details of the stream function, velocity and temperature contours and profiles as well as heat transfer rates in terms of Nusselt number are obtained. The study shows that the increase in thermal dispersion coefficient of the porous medium results in more heat energy to disperse away in the normal direction to the wall. This induces more fluid to flow along the wall, enhancing the heat transfer coefficient particularly near the wall.  相似文献   

2.
A boundary layer analysis is presented for the mixed convection from a vertical plate embedded in a porous medium. The effects of thermal dispersion and stratification on the flow and temperature fields are investigated. The conservation equations that govern the problem are reduced to a system of nonlinear ordinary differential equations. The resulting equations were solved on the basis of the local similarity approach. Received on 12 February 1998  相似文献   

3.
Forced convection with viscous dissipation in a parallel plate channel filled by a saturated porous medium is investigated numerically. Three different viscous dissipation models are examined. Two different sets of wall conditions are considered: isothermal and isoflux. Analytical expressions are also presented for the asymptotic temperature profile and the asymptotic Nusselt number. With isothermal walls, the Brinkman number significantly influences the developing Nusselt number but not the asymptotic one. At constant wall heat flux, both the developing and the asymptotic Nusselt numbers are affected by the value of the Brinkman number. The Nusselt number is sensitive to the porous medium shape factor under all conditions considered.  相似文献   

4.
Flow driven by an externally imposed pressure gradient in a vertical porous channel is analysed. The combined effects of viscous dissipation and thermal buoyancy are taken into account. These effects yield a basic mixed convection regime given by dual flow branches. Duality of flow emerges for a given vertical pressure gradient. In the case of downward pressure gradient, i.e. upward mean flow, dual solutions coincide when the intensity of the downward pressure gradient attains a maximum. Above this maximum no stationary and parallel flow solution exists. A nonlinear stability analysis of the dual solution branches is carried out limited to parallel flow perturbations. This analysis is sufficient to prove that one of the dual solution branches is unstable. The evolution in time of a solution in the unstable branch is also studied by a direct numerical solution of the governing equation.  相似文献   

5.
The onset of buoyancy-driven convection in an initially quiescent ferrofluid saturated horizontal porous layer in the presence of a uniform vertical magnetic field is investigated. The Brinkman-Lapwood extended Darcy equation with fluid viscosity different from effective viscosity is used to describe the flow in the porous medium. The lower boundary of the porous layer is assumed to be rigid-paramagnetic, while the upper paramagnetic boundary is considered to be either rigid or stress-free. The thermal conditions include fixed heat flux at the lower boundary, and a general convective–radiative exchange at the upper boundary, which encompasses fixed temperature and fixed heat flux as particular cases. The resulting eigenvalue problem is solved numerically using the Galerkin technique. It is found that increase in the Biot number Bi, porous parameter σ, viscosity ratio Λ, magnetic susceptibility χ, and decrease in the magnetic number M 1 and non-linearity of magnetization M 3 is to delay the onset of ferroconvection in a porous medium. Further, increase in M 1, M 3, and decrease in χ, Λ, σ and Bi is to decrease the size of convection cells.  相似文献   

6.
The problem of viscous dissipation and thermal dispersion in saturated porous medium is numerically investigated for the case of non-Darcy flow regime. The fluid is induced to flow upward by natural convection as a result of a semi-infinite vertical wall that is immersed in the porous medium and is kept at constant higher temperature. The boundary layer approximations were used to simplify the set of the governing, nonlinear partial differential equations, which were then non-dimensionalized and solved using the finite elements method. The results for the details of the governing parameters are presented and investigated. It is found that the irreversible process of transforming the kinetic energy of the moving fluid to heat energy via the viscosity of the moving fluid (i.e., viscous dissipation) resulted in insignificant generation of heat for the range of parameters considered in this study. On the other hand, thermal dispersion has shown to disperse heat energy normal to the wall more effectively compared with the normal diffusion mechanism.  相似文献   

7.
The present study is devoted to investigate the influences of viscous dissipation on buoyancy induced flow over a horizontal or a vertical flat plate embedded in a non-Newtonian fluid saturated porous medium. The Ostwald-de Waele power-law model is used to characterize the non-Newtonian fluid behavior. Similarity solutions for the transformed governing equations are obtained with prescribed variable surface temperature (PT) or with prescribed variable surface heat flux (PHF) for the horizontal plate case. While, the similarity solutions are obtained with prescribed variable surface heat flux for the vertical plate case. Different similar transformations, for each case, are used. Numerical results for the details of the velocity and temperature profiles are shown on graphs. Nusselt number associated with temperature distributions and excess surface temperature associated with heat flux distributions which are entered in tables have been presented for different values of the power-law index n and the exponent as well as Eckert number.  相似文献   

8.
The mixed convection flow due to a line thermal source embedded at the leading edge of an adiabatic vertical plane surface immersed in a saturated porous medium has been studied. Both weakly and strongly buoyant plume regimes have been considered. The cases of buoyancy assisting and buoyancy opposing flow conditions have been incorporated in the analysis. The results are presented for the entire range of buoyancy parameter from the pure forced convection (ξ=0) to the pure free convection (ξ → ∞@#@) regimes. For buoyancy-assisting flow, the wall temperature and the velocity at the wall increase as the plume strength increases. However, they all decrease as the free-stream velocity increases. For buoyancyopposing flow, the temperature at the wall increases as the strength of the plume increases but velocity at the wall decreases.  相似文献   

9.

A numerical analysis is made to analyze the variable porosity and thermal dispersion effects on the vortex mode of instability of a horizontal natural convection boundary layer flow in a saturated porous medium. The porosity of the medium is assumed to vary exponentially with distance from the wall. In the base flow, the governing equations are solved by using a suitable variable transformation and employing an implicit finite difference Keller Box method. The stability analysis is based on the linear stability theory and the resulting eigenvalue problem is solved by the local similarity approximations. The results indicate that both effects increase the heat transfer rate. In addition, the thermal dispersion effect stabilizes the flow to the vortex mode of disturbance, while the variable porosity effect destabilizes it.

  相似文献   

10.
This paper analyzes the variable viscosity effects on non-Darcy free or mixed convection flow on a vertical surface in a fluid saturated porous medium. The viscosity of the fluid is assumed to be a inverse linear function of temperature. Velocity and heat transfer are found to be significantly affected by the variable viscosity parameter, Ergun number, Peclet number or Rayleigh number.  相似文献   

11.
Viscous dissipation effects in the problem of a fully-developed combined free and forced convection flow between two symmetrically and asymmetrically heated vertical parallel walls filled with a porous medium is analyzed. The equation of motion contains the modified Rayleigh number for a porous medium and the small-order viscous dissipation parameter. Particular attention is given to the solutions near the critical Rayleigh numbers at which infinite flow rates are predicted. Information concerning the multiplicity of solutions at critical Rayleigh numbers is also deduced from perturbation solutions of the governing equation.  相似文献   

12.
13.
A non-similar boundary layer analysis is presented to study the flow, heat and mass transfer characteristics of non-Darcian mixed convection of a non-Newtonian fluid from a vertical isothermal plate embedded in a homogeneous porous medium with the effect of Soret and Dufour and in the presence of either surface injection or suction. The value of the mixed-convection parameter lies between 0 and 1. In addition, the power-law model is used for non-Newtonian fluids with exponent n < 1 for pseudoplastics n = 1 for Newtonian fluids and n > 1 for dilatant fluids. Furthermore, the coordinates and dependent variables are transformed to yield computationally efficient numerical solutions that are valid over the entire range of mixed convection, from the pure forced-convection limit to the pure free-convection limit, and the whole domain of non-Newtonian fluids, from pseudoplastics to dilatant fluids. The numerical solution of the problem is derived using a Runge–Kutta integration scheme with Newton–Raphson shooting technique. Distributions for velocity, temperature and concentration, as well as for the rate of wall heat and mass transfer, have been obtained and discussed for various physical parametric values.  相似文献   

14.
A non-autonomous complex Ginzburg-Landau equation (CGLE) for the finite amplitude of convection is derived, and a method is presented here to determine the amplitude of this convection with a weakly nonlinear thermal instability for an oscillatory mode under throughflow and gravity modulation. Only infinitesimal disturbances are considered. The disturbances in velocity, temperature, and solutal fields are treated by a perturbation expansion in powers of the amplitude of the applied gravity field. Throughflow can stabilize or destabilize the system for stress free and isothermal boundary conditions. The Nusselt and Sherwood numbers are obtained numerically to present the results of heat and mass transfer. It is found that throughflow and gravity modulation can be used alternately to heat and mass transfer. Further, oscillatory flow, rather than stationary flow, enhances heat and mass transfer.  相似文献   

15.
An analysis is presented to investigate the effect of radiation on mixed convection from a horizontal flat plate in a saturated porous medium. Both a hot surface facing upward and a cold surface facing downward are considered in the analysis. The conservation equations that govern the problem are reduced to a system of nonlinear ordinary different equations. The important parameters of this problem are the radiation parameter R, the buoyancy parameter B, and the freestream to wall temperature ratio T /T w for the case of a hot surface or the wall to freestream to wall temperature T w /T for the case of a cold surface.  相似文献   

16.
Transient non-Darcy free convection between two parallel vertical plates in a fluid saturated porous medium is investigated using the generalized momentum equation proposed by Vafai and Tien. The effects of porous inertia and solid boundary are considered in addition to the Darcy flow resistance. Exact solutions are found for the asymptotic states at small and large times. The large time solutions reveal that the velocity profiles are rather sensitive to the Darcy number Da when Da<1. It has also been found that boundary friction alters the velocity distribution near the wall, considerably. Finite difference calculations have also been carried out to investigate the transient behaviour at the intermediate times in which no similarity solutions are possible. This analytical and numerical study reveals that the transient free convection between the parallel plates may well be described by matching the two distinct asymptotic solutions obtained at small and large times.Nomenclature C empirical constant for the Forchheimer term - f velocity function for the small time solution - F velocity function for the large time solution - g acceleration due to gravity - Gr* micro-scale Grashof number - H a half distance between two infinite plates - K permeability - Nu Nusselt number - Pr Prandtl number - t time - T temperature - u, v Darcian velocity components - x, y Cartesian coordinates - effective thermal diffusivity - coefficient of thermal expansion - porosity - dimensionless time - similarity variable - dimensionless temperature - viscosity - kinematic viscosity - density - the ratio of heat capacities  相似文献   

17.
The viscous dissipation effect on forced convection in a porous saturated circular tube with an isoflux wall is investigated on the basis of the Brinkman flow model. For the thermally developing region, a numerical study is reported while a perturbation analysis is presented to find expressions for the temperature profile and the Nusselt number for the fully developed region. The fully developed Nusselt number found by numerical solution for the developing region is compared with that of asymptotic analysis and a good degree of agreement is observed.  相似文献   

18.
This paper concentrates on the analysis of the thermal nonequilibrium effects during forced convection in a parallel-plate channel filled with a fluid saturated porous medium. The flow in a channel is described by the Brinkman-Forchheimer-extended Darcy equation and the thermal nonequilibrium effects are accounted for by utilizing the two energy equations model. Applying the perturbation technique, an analytical solution of the problem is obtained. It is established that the temperature difference between the fluid and solid phases for the steady fully developed flow is proportional to the ratio of the flow velocity to the mean velocity. This results in a local thermal equilibrium at the walls of the channel if the Brinkman term which allows for the no-slip boundary condition at the walls is included into the momentum equation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号