首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We consider the class of self-similar axisymmetric and two-dimensional laminar flows of a viscous gas in a long channel with smooth contour, in which the longitudinal component of the velocity and the gas temperature are functions of a single dimensionless transverse coordinate. Such flows correspond to exponential (axisymmetric flow) or linear (two-dimensional flow) increase of the radius or height of the channel and corresponding exponential or hyperbolic decrease of the static pressure along the channel.  相似文献   

2.
This article discusses self-similar statements of the problem of the motion of a completely radiating and absorbing gas. The field of radiation is assumed to be quasi-steady-state, and the contribution of the radiation to the internal energy, as well as the pressure and the viscosity of the medium, are not taken into account. The presence of local thermodynamic equilibrium is assumed. The absorption coefficient is approximated by a power function of the pressure and the density. Scattering of the radiation is not taken into account. Under these assumptions, there exist self-similar statements of the problem for one-dimensional unsteady-state flows (a strong detonation, the problem of plug-flow, motion under the effect of a radiation source, and others) and two-dimensional steady-state flows (flow in a diffuser, supersonic flow around a wedge or a cone). It is shown that there exists a non steady-state spherically symmetrical flow depending on four parameters; this flow is adiabatic in spite of the presence of radiation. This article is made up of seven sections. It is shown in the first section that the presence of radiation leads to the appearance of new dimensional constants, entering into the equations of the problem. The second section is devoted to self-similar nonsteady-state one-dimensional flows. The third section contains a detailed study of one class of such flows. In a partial case, adiabatic flows of a radiating gas are obtained. In the fourth and fifth sections, a detailed analysis is made of the initial and boundary conditions from the point of view of dimensionality. The sixth section describes self-similar two-dimensional steady-state flows of a radiating-absorbing gas. The seventh section consists of remarks with respect to approximations of the transfer equation.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 8–22, July–August, 1970.  相似文献   

3.
The results of the numerical simulation of three problems of ideal gas flow with shock waves, which admit self-similar solutions, are presented. These problems are the double Mach-type reflection of a shock from a wedge, the breakdown of a combined discontinuity on a 90° sharp corner, and the outflow of a supersonic jet from an expanding slot. It is shown that for certain input data the self-similar solution may become unstable and is replaced by a fluctuating flow. The reasons for the generation of these fluctuations and their mechanism are discussed. Volgograd. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 166–175, July–August, 1998.  相似文献   

4.
Direct numerical simulation of compressible turbulent flows   总被引:3,自引:0,他引:3       下载免费PDF全文
This paper reviews the authors' recent studies on compressible turbulence by using direct numerical simulation (DNS),including DNS of isotropic(decaying) turbulence, turbulent mixing-layer,turbulent boundary-layer and shock/boundary-layer interaction.Turbulence statistics, compressibility effects,turbulent kinetic energy budget and coherent structures are studied based on the DNS data.The mechanism of sound source in turbulent flows is also analyzed. It shows that DNS is a powerful tool for the mechanistic study of compressible turbulence.  相似文献   

5.
Direct numerical simulations of 2D driven cavity flows have been performed. The simulations exhibit that the flow converges to a periodically oscillating state at Re=11,000, and reveal that the dynamics is chaotic at Re=22,000. The dimension of the attractor and the Kolmogorov entropy have been computed. Explicit time-integration techniques are discussed.  相似文献   

6.
One-dimensional unsteady flows of a combustible gas mixture with account for the finite chemical-reaction rate were studied in [1]. The conditions for self-similarity of such flows were indicated, mathematical formulation of the problem was given, and several numerical calculations were carried out.The authors pointed out the necessity for conducting additional studies, since they were not able to obtain numerically, by means of passages to the limit, self-sustaining detonation waves propagating with the Chapman-Jouguet (CJ) velocity.In this article we point out the reason why it was not possible to reach the CJ regime in [1], and a qualitative analysis is made, by means of the results of [2], of the system of equations describing the self-similar flows of a gas with finite chemical-reaction rate, and the passage to the limit is made to the self-sustaining CJ detonation waves in the presence of chemical reactions. It is also shown that the problem of unsteady flows of a combustible mixture of gases with finite chemical-reaction rate is analogous to the problem of the flow of a gas heated by radiation, examined in [3].In conclusion the authors wish to thank I. V. Nemchinov and A. G. Kulikovskii for discussions of this study.  相似文献   

7.
介绍了气体动理学格式(GKS)的基本构造原理及其在两种典型多尺度流动模拟中的应用。GKS利用介观BGK方程的跨尺度演化解来构造网格界面上的数值通量,从而发展出能随计算网格尺度变化自动切换物理模型的多尺度方法。对湍流这种宏观多尺度流动,发展了高精度GKS方法并成功用于低雷诺数湍流的直接数值模拟;为实现对高雷诺数湍流的高效精细模拟,基于拓展BGK方程和已有的RANS,LES模型建立了新型多尺度模拟框架。对跨流域稀薄流动,发展了适合大规模并行的三维统一气体动理学格式(UGKS),并建立了适合轴对称稀薄流动的UGKS。研究表明,GKS在多尺度流动高效模拟中的优异性能,具有很好的发展前景。  相似文献   

8.
A plane time-dependent flow generated by the interaction between a normal shock and a low-density gas region occupying a quarter of the plane is theoretically investigated. Numerical simulation is performed on the basis of the Euler equations. It is established that after the shock has come in contact with the low-density region two-dimensional self-similar flows of different type can develop. On regular interaction the original shock is refracted on the low-density region with the matching of the accelerated and original shock and the refracted contact discontinuity at a common point. On irregular interaction a complicated flow occurs; it includes curved and oblique shocks, a contact discontinuity with points of inflection, multiple matching points, a high-pressure jet, and a layered vortex. The jet and vortex structures are investigated in detail. The tendency of the gasdynamic structure development with variation in the control parameters of the problem is determined. A simplified, near-analytical technique for estimating the slopes of the main shocks and the gas parameters behind them is proposed.  相似文献   

9.
气固两相流模拟中,当固相尺度接近或大于Kolmogorov尺度时,普通的点源模型将不再适用,固体相的体积效应和表面效应将对流体相产生显著的影响。通过采用直接数值模拟方法,结合内嵌边界方法对湍流中不同湍流强度流体横掠大于Kolmogorov尺度的固相颗粒进行了全尺度模拟,讨论分析了在两种湍流度下方形颗粒对湍流的调制影响以及颗粒的受力情况。  相似文献   

10.
The marker‐density‐function (MDF) method has been developed to conduct direct numerical simulation (DNS) for bubbly flows. The method is applied to turbulent bubbly channel flows to elucidate the interaction between bubbles and wall turbulence. The simulation is designed to clarify the structure of the turbulent boundary layer containing microbubbles and the mechanism of frictional drag reduction. It is deduced from the numerical tests that the interaction between bubbles and wall turbulence depends on the Weber and Froude numbers. The reduction of the frictional resistance on the wall is attained and its mechanism is explained from the modulation of the three‐dimensional structure of the turbulent flow. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
Numerical simulations of viscoplastic fluid flows have provided a better understanding of fundamental properties of yield stress fluids in many applications relevant to natural and engineering sciences. In the first part of this paper, we review the classical numerical methods for the solution of the non-smooth viscoplastic mathematical models, highlight their advantages and drawbacks, and discuss more recent numerical methods that show promises for fast algorithms and accurate solutions. In the second part, we present and analyze a variety of applications and extensions involving viscoplastic flow simulations: yield slip at the wall, heat transfer, thixotropy, granular materials, and combining elasticity, with multiple phases and shallow flow approximations. We illustrate from a physical viewpoint how fascinating the corresponding rich phenomena pointed out by these simulations are.  相似文献   

12.
We develop a second‐order accurate Navier–Stokes solver based on r‐adaptivity of the underlying numerical discretization. The motion of the mesh is based on the fluid velocity field; however, certain adjustments to the Lagrangian velocities are introduced to maintain quality of the mesh. The adjustments are based on the variational approach of energy minimization to redistribute grid points closer to the areas of rapid solution variation. To quantify the numerical diffusion inherent to each method, we monitor changes in the background potential energy, computation of which is based on the density field. We demonstrate on a standing interfacial gravity wave simulation how using our method of grid evolution decreases the rate of increase of the background potential energy compared with using the same advection scheme on the stationary grid. To further highlight the benefit of the proposed moving grid method, we apply it to the nonhydrostatic lock‐exchange flow where the evolution of the interface is more complex than in the standing wave test case. Naive grid evolution based on the fluid velocities in the lock‐exchange flow leads to grid tangling as Kelvin–Helmholtz billows develop at the interface. This is remedied by grid refinement using the variational approach. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A new numerical algorithm for attached cavitation flows is developed. A cavitation model is implemented in a viscous Navier–Stokes solver. The liquid–vapour interface is assumed as a free surface boundary of the computation domain. Its shape is determined with an iterative procedure to match the cavity surface to a constant pressure boundary. The pressure distribution, as well as its gradient along the wall, is taken into account in updating the cavity shape iteratively. A series of computations are performed for the cavitating flows across three kinds of headform/cylinder bodies: conic, ogival and hemispheric heads. A range of cavitation numbers is investigated for each headform/cylinder body. The obtained results are reasonable and the iterative procedure of cavity shape updating is quite stable. The superiority of the developed cavitation model and algorithm is demonstrated. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
气固两相流中颗粒碰撞的Monte-Carlo数值模拟   总被引:3,自引:1,他引:2  
利用颗粒碰撞动力学模型和颗粒几何碰撞率模型,采用Monte—Carlo算法来模拟颗粒之间碰撞,把该算法与求解雷诺应力-概率密度函数模型的有限差分-Monte Carlo算法耦合起来,对轴对称突扩通道内的两相旋流场进行了数值模拟,模拟结果表明,由于颗粒碰撞使颗粒的动能和湍动能在三个坐标方向上进行了再分配,从而导致颗粒的动能和湍动能在三个坐标方向上趋于各向同性;另外,由于颗粒碰撞破坏了颗粒-颗粒、颗粒-流体微团之间的速度关联,从而造成颗粒湍动能及两相速度脉动关联的降低。  相似文献   

15.
16.
NND schemes and numerical simulation of axial symmetric free jet flows   总被引:1,自引:0,他引:1  
Through a study on one-dimensional Navier-Stokes equations, it was found that the spurious oscillations occuring near shock waves with finite difference equations are related to the dispersion term in the corresponding modified differential equations. If the sign of dispersion coefficient is properly adjusted so that the sign changes across shock waves, the undesirable oscillations can be totally suppressed. Based on this finding, the non-oscillatory, containing no free parameters and dissipative shheme (NND scheme) is developed. This scheme is one of “TVD”. The axisymmetric free jet flows are simulated numerically using this scheme. The results obtained by the present scheme are compared with the experimental picture. It is shown that the agreement is very good, and that this scheme has advantages of high resolution for capturing shocks and contact discontinuities. Project supported by National Science Foundation of China  相似文献   

17.
时刻追踪多介质界面运动的动网格方法   总被引:1,自引:0,他引:1  
在对可压缩多介质流动的数值模拟中,定义介质界面为一种内部边界,由网格的边组成,界面边两侧对应两种不同介质中的网格。通过求解Riemann问题追踪介质界面上网格节点的运动,同时采用局部重构的动网格技术处理介质界面的大变形问题,并将介质界面定义为网格变形边界,以防止该边界上网格体积为负。运用HLLC格式求解ALE方程组得到整个多介质流场的数值解。最后从几个多介质流模型的计算结果可以看出,本文的动网格方法是可行的,而且可以时刻追踪介质界面的运动状态。  相似文献   

18.
The possibility of applying geometrical acoustics to the investigation of the stability of flows in expanding regions was pointed out by Galin and Kulikovskii [1], who investigated the stability of homogeneous gas flows separated by discontinuity surfaces. Eckhoff [2] applied geometrical acoustics to the analysis of the stability of solutions of symmetric hyperbolic systems whose coefficients do not depend explicitly on the time. The treatment was given for unbounded regions in the case when acoustic points are absent. The stability of gas-dynamic flows satisfying these restrictions was considered by Eckhoff and Storesletten [3, 4]. The present paper is devoted to the question of the stability of plane self-similar flows in expanding regions [5] with respect to weak two-dimensional perturbations. Propagation of perturbations through the gas is described in the approximation of geometrical acoustics [6–8]. The intensity of the perturbations is characterized by the total energy E of a wave packet, whose behavior as t → ∞ is chosen as the criterion of stability of the considered flow. It is shown that E → 0 with the time in problems of a strong explosion and a decelerated piston. In the problem of an accelerated piston, the total energy of weak perturbations increases unboundedly with the time.  相似文献   

19.
Sun  M.  Takayama  K. 《Shock Waves》2003,13(1):25-32
In numerical simulation of the Euler equations, the slipstream or shear layer that appears behind a diffracted shock wave may develop small discrete vortices using fine computational meshes. Similar phenomena were also observed in the simulation of a Mach reflection that is accompanied by a shear layer. However, these small vortices have never been observed in any shock-tube experiment, although the wave pattern and the shape of the main vortex agree very well with visualization results. Numerical solutions obtained with coarse grids may agree better with experimental photos than those with very fine grids because of the pollution of the small vortices. This note tries to investigate the effect of viscosity on the small vortices by comparing the solutions of the laminar Navier-Stokes equations and the turbulence model. It is found that the small vortices are still observed in the solution of the laminar Navier-Stokes equations, although they can be suppressed by using the turbulence model. Numerical and experimental factors that are responsible for the deviation of the laminar solutions from experimental results are discussed. The secondary vortex in shock diffraction is successfully simulated by solving the Navier-Stokes equations.Received: 28 March 2003, Accepted: 6 May 2003, Published online: 11 June 2003  相似文献   

20.
An accurate finite‐volume‐based numerical method for the simulation of an isothermal two‐phase flow, consisting of a liquid slug translating in a non‐reacting gas in a circular pipe is presented. This method is built on a sharp interface concept and developed on an Eulerian Cartesian fixed‐grid with a cut‐cell scheme and marker points to track the moving interface. The unsteady, axisymmetric Navier–Stokes equations in both liquid and gas phases are solved separately. The mass continuity and momentum flux conditions are explicitly matched at the true surface phase boundary to determine the interface shape and movement. A quadratic curve fitting algorithm with marker points is used to yield smooth and accurate information of the interface curvatures. It is uniquely demonstrated for the first time with the current method that conservation of mass is strictly enforced for continuous infusion of flow into the domain of computation. The method has been used to compute the velocity and pressure fields and the deformation of the liquid core. It is also shown that the current method is capable of producing accurate results for a wide range of Reynolds number, Re, Weber number, We, and large property jumps at the interface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号