首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequential reaction of HTMP (= 2,2,6,6-tetramethylpiperidine) with nBuLi and Et2Zn affords unsolvated polymer chains of EtZn(micro-Et)(micro-TMP)Li 6. The scope of this reagent in directed ortho metalation (DoM) chemistry has been tested by its reaction with N,N-diisopropylnaphthamide in THF to give EtZn(micro-C10H6C(O)NiPr2-2)2Li.2THF 7. Data reveal that 6 has undergone reaction with 2 equiv of aromatic tertiary amide and imply that it exhibits dual alkyl/amido basicity. DFT calculations reveal that direct alkyl basicity is kinetically disfavored and instead point to a stepwise mechanism whereby 6 acts as an amido base, liberating HTMP during the first DoM event. Re-coordination of the amine at lithium then incurs the elimination of EtH. Reaction of the resulting alkyl(amido)(arylamido)zincate with a second equivalent of N,N-diisopropylnaphthamide eliminates HTMP and affords 7. Both DoM steps involve the exhibition of amido basicity and each reveals a low kinetic barrier to reaction. Understanding of this reaction sequence is tested by treating 6 with N,N-diisopropylbenzamide in THF. On the basis of theory and experiment, the presence of THF solvent (in place of stronger Lewis bases) combined with the use of a sterically less congested aromatic amide is expected to encourage threefold, stepwise reaction. Isolation and characterization of the resulting tripodal zincate Zn(micro-C6H4C(O)NiPr2-2)3Li.THF 8 bears this out and suggests a significant new level of control in zincate-induced DoM chemistry through the combination of experiment and DFT studies.  相似文献   

2.
Alkali metal zincate reagents are attracting considerable attention at present in respect to their often special reactivity/selectivity in hydrogen-metal and halogen-metal interconversion reactions. Heteroleptic diorgano-amidozincates, typified by lithium di-tert-butyltetramethylpiperidinozincate, have proved to be especially useful reagents in such applications. In this paper the related sodium TMP-zincate, prepared as its TMEDA (N,N,N',N'-tetramethylethylenediamine) adduct, [TMEDA.Na(mu-tBu)(mu-TMP)Zn(tBu)], 1, is introduced. This new zincate was synthesized from a 1:1:1 mixture of tBu2Zn, NaTMP, and TMEDA in hexane solution, as a colorless crystalline solid in an isolated yield of 58%. It has been characterized in solution by 1H and 13C NMR spectroscopic studies. An X-ray crystallographic study reveals that 1 adopts a five-membered (NaNZnCC) ring system featuring a TMP bridge and an unusual, asymmetrical tBu bridge involving a Na...Me agostic contact. Probing the basicity of 1, reaction with benzene affords the new hetero(tri)leptic zincate [TMEDA.Na(mu-Ph)(mu-TMP)Zn(tBu)], 2, which has also been crystallographically characterized. Thus, in this hydrogen-metal exchange reaction 1 functions as an alkyl base, with the elimination of butane, as opposed to an amido base. Also reported are DFT calculations using B3LYP functionals and the 6-311G** basis set on model zincate systems, which intimate that the preference of 1 for tBu ligand transfer over TMP ligand transfer in the reaction toward benzene is due to favorable thermodynamic factors.  相似文献   

3.
The reaction of ScCl(3)(THF)(3) or YCl(3) in a 1:1 molar ratio under reflux for 8 h with [{Li(bdmpza)(H(2)O)}(4)] [bdmpza = bis(3,5-dimethylpyrazol-1-yl)acetate], [{Li(bdmpzdta)(H(2)O)}(4)] [bdmpzdta = bis(3,5-dimethylpyrazol-1-yl)dithioacetate], and (Hbdmpze) [bdmpze = 2,2-bis(3,5-dimethylpyrazol-1-yl)ethoxide] affords the corresponding complexes [MCl(2)(kappa(3)-bdmpzx)(THF)] (x = a, M = Sc (1), Y (2); x = dta, M = Sc (3), Y (4); x = e, M = Sc (5), Y (6)). However, when the reaction was carried out for 1 h under reflux between ScCl(3)(THF)(3) and [{Li(bdmpzdta)(H(2)O)}(4)], a new anionic complex [Li(THF)(4)][ScCl(3)(kappa(3)-bdmpzdta)] (7) was obtained. Reaction of [{Li(bdmpza)(H(2)O)}(4)] with YCl(3) in a 2:1 molar ratio under reflux for 8 h gave the complex [YCl(kappa(3)-bdmpza)(2)] (8). The same reaction, but with the lithium compound [{Li(bdmpzdta)(H(2)O)}(4)], led to the formation of an anionic complex [Li(THF)(4)][YCl(3)(kappa(3)-bdmpzdta)] (9). The X-ray crystal structures of 7 and 9 were established. Finally, the addition of 1 equiv of [{Li(bdmpza)(H(2)O)}(4)] or [{Li(bdmpzdta)(H(2)O)}(4)] to a solution of YCl(3) in THF under reflux, followed by the addition of 1 equiv of 1,10-phenanthroline, resulted in the formation of the corresponding complexes [YCl(2)(kappa(3)-bdmpzx)(phen)] (x = a (10), x = dta (11)). These complexes are the first examples of group 3 metals stabilized by heteroscorpionate ligands. In addition, we have explored the reactivity of some of these complexes with alcohols and amides. For example, the direct reaction of [YCl(2)(kappa(3)-bdmpza)(THF)] (2) with several alcohols gave the alkoxide complexes [YCl(kappa(3)-bdmpza)(OR)] (R = Et (12), iPr (13)). Finally, the reaction between [ScCl(2)(kappa(3)-bdmpzdta)(THF)] (3) or [Li(THF)(4)][ScCl(3)(kappa(3)-bdmpzdta)] (7) and LiN(SiMe(3))(2).Et(2)O in 1:1 and 1:2 molar ratios gave rise to the complexes [ScCl(kappa(3)-bdmpzdta){N(SiMe(3))(2)}] (14) and [Sc(kappa(3)-bdmpzdta){N(SiMe(3))(2)}(2)] (15), respectively.  相似文献   

4.
The mechanisms by which directed ortho metalation (DoM) and postmetalation processes occur when aromatic compounds are treated with mixed alkylamido aluminate i-Bu3Al(TMP)Li (TMP-aluminate 1; TMP = 2,2,6,6-tetramethylpiperidide) have been investigated by computation and X-ray diffraction. Sequential reaction of ArC(=O)N(i-Pr)2 (Ar = phenyl, 1-naphthyl) with t-BuLi and i-Bu3Al in tetrahydrofuran affords [2-(i-Bu3Al)C(m)H(n)C(=O)N(i-Pr)2]Li x 3 THF (m = 6, n = 4, 7; m = 10, n = 6, 8). These data advance the structural evidence for ortho-aluminated functionalized aromatics and represent model intermediates in DoM chemistry. Both 7 and 8 are found to resist reaction with HTMP, suggesting that ortho-aluminated aromatics are incapable of exhibiting stepwise deprotonative reactivity of the type recently shown to pertain to the related field of ortho zincation chemistry. Density functional theory calculations corroborate this view and reveal the existence of substantial kinetic barriers both to one-step alkyl exchange and to amido-alkyl exchange after an initial amido deprotonation reaction by aluminate bases. Rationalization of this dichotomy comes from an evaluation of the inherent Lewis acidities of the Al and Zn centers. As a representative synthetic application of this high kinetic reactivity of the TMP-aluminate, the highly regioselective deprotonative functionalization of unsymmetrical ketones both under mild conditions and at elevated temperatures is also presented.  相似文献   

5.
The surprising transformation of the saturated diamine (iPr)NHCH(2)CH(2)NH(iPr) to the unsaturated diazaethene [(iPr)NCH═CHN(iPr)](2-) via the synergic mixture nBuM, (tBu)(2)Zn and TMEDA (where M = Li, Na; TMEDA = N,N,N',N'-tetramethylethylenediamine) has been investigated by multinuclear NMR spectroscopic studies and DFT calculations. Several pertinent intermediary and related compounds (TMEDA)Li[(iPr)NCH(2)CH(2)NH(iPr)]Zn(tBu)(2) (3), (TMEDA)Li[(iPr)NCH(2)CH(2)CH(2)N(iPr)]Zn(tBu) (5), {(THF)Li[(iPr)NCH(2)CH(2)N(iPr)]Zn(tBu)}(2) (6), and {(TMEDA)Na[(iPr)NCH(2)CH(2)N(iPr)]Zn(tBu)}(2) (11), characterized by single-crystal X-ray diffraction, are discussed in relation to their role in the formation of (TMEDA)M[(iPr)NCH═CHN(iPr)]Zn(tBu) (M = Li, 1; Na, 10). In addition, the dilithio zincate molecular hydride [(TMEDA)Li](2)[(iPr)NCH(2)CH(2)N(iPr)]Zn(tBu)H 7 has been synthesized from the reaction of (TMEDA)Li[(iPr)NCH(2)CH(2)NH(iPr)]Zn(tBu)(2)3 with nBuLi(TMEDA) and also characterized by both X-ray crystallographic and NMR spectroscopic studies. The retention of the Li-H bond of 7 in solution was confirmed by (7)Li-(1)H HSQC experiments. Also, the (7)Li NMR spectrum of 7 in C(6)D(6) solution allowed for the rare observation of a scalar (1)J(Li-H) coupling constant of 13.3 Hz. Possible mechanisms for the transformation from diamine to diazaethene, a process involving the formal breakage of four bonds, have been determined computationally using density functional theory. The dominant mechanism, starting from (TMEDA)Li[(iPr)NCH(2)CH(2)N(iPr)]Zn(tBu) (4), involves the formation of a hydride intermediate and leads directly to the observed diazaethene product. In addition the existence of 7 in equilibrium with 4 through the dynamic association and dissociation of a (TMEDA)LiH ligand, also provides a secondary mechanism for the formation of the diazaethene. The two reaction pathways (i.e., starting from 4 or 7) are quite distinct and provide excellent examples in which the two distinct metals in the system are able to interact synergically to catalyze this otherwise challenging transformation.  相似文献   

6.
The sequential reaction of ZnMe2 with a 2-pyridylamine (HN(2-C5H4N)R, R = Ph: 1; 3,5-Xy (=3,5-xylyl): 2; 2,6-Xy: 3; Bz (=benzyl): 4; Me: 5), tBuLi and thereafter with oxygen affords various lithium zincate species, the solid-state structures of which reveal a diversity of oxo-capture modes. Amine 1 reacts to give both dimeric THF [Li(Me)OZn[N(2-C5H4N)Ph]2] (6), wherein oxygen has inserted into the Zn-C bond of a [MeZn[N(2-C5H4N)-Ph]2] ion, and the trigonal Li2Zn complex, bis(OtBu)-capped (THF x Li)2-[[(mu3-O)tBu]2Zn[N(2-C5H4N)Ph]2] (7). The structural analogue of 6 (8) results from the employment of 2, while the use of more sterically congested 3 yields a pseudo-cubane dimer [(THF x [Li(tBu)OZn(OtBu)Me]]2] (9) notable for the retention of labile Zn-C(Me). Amines 4 and 5 afford the oxo-encapsulation products [mu4-O)Zn4[(2-C5H4N)-NBz]6] (10b), and [tBu(mu3-O)-Li3(mu6-O)Zn3[(2-C5H4N)NMe]6] (11), respectively, with concomitant oxo-insertion into a Li-C interaction resulting in capping of the fac-isomeric (mu6-O)M3M'3 distorted octahedral core of the latter complex by a tert-butoxide group.  相似文献   

7.
Photolysis of the uranyl(VI) Schiff base complex UO2(tBu4-salphen)(THF) (1a) with cobaltocene in THF affords [Cp2Co][UO2(tBu4-salphen)(OH)] (2) in high yield while irradiation in toluene yields no reaction. Electronic emission spectra of 1a reveal a large Stokes' shift in toluene similar to that observed in the free ligand, while in THF the structural rearrangement responsible for this shift is blocked. Instead, the ligand-centered excited state is redirected to the uranyl(VI) center by way of energy transfer, thus generating 2 from the intramolecular activation of a coordinated THF molecule.  相似文献   

8.
Single crystals of the meta- and para-phenylene-bridged ditopic trihydridoborates (Li(THF)(2))(2)[m-C(6)H(4)(BH(3))(2)] and (Li(THF)(2))(2)[p-C(6)H(4)(BH(3))(2)] have been prepared and investigated by X-ray crystallography. The compounds turned out to be coordination polymers in which each trihydridoborate substituent is connected with one trihydridoborate substituent of a neighbouring monomer via two bridging Li(THF)(2)(+) ions. (Li(THF)(2))(2)[m-C(6)H(4)(BH(3))(2)] and (Li(THF)(2))(2)[p-C(6)H(4)(BH(3))(2)] suffer from poor solubility in all common non-protic solvents. Thus, a more soluble derivative of (Li(THF)(2))(2)[p-C(6)H(4)(BH(3))(2)], equipped with n-hexyl groups at the positions 2 and 5 of the phenylene ring, has been used for all further investigations (i.e., compound Li(2)[6]). Treatment of Li(2)[6] with Me(3)SiCl in the presence of excess N(Me)(2)Et leads to the abstraction of one hydride ion per boron atom under formation of the ditopic amine-borane adduct p-C(6)H(2)(n-hexyl)(2)(BH(2)-N(Me)(2)Et)(2) (7). The compound turned out to be an efficient hydroboration reagent both for internal olefins (i.e., 1,5-cyclooctadiene) and terminal alkynes (i.e., tert-butyl acetylene) to give p-C(6)H(2)(n-hexyl)(2)(9-BBN)(2) (8; 9-BBN = 9-borabicyclo[3.3.1]nonyl) and p-C(6)H(2)(n-hexyl)(2)(B(C(H)=C(H)tBu)(2))(2) (9), respectively.  相似文献   

9.
The treatment of LiAlH(4) with 2, 3, or 4 equiv of the 3,5-disubstituted pyrazoles Ph(2)pzH or iPr(2)pzH afforded [Li(THF)(2)][AlH(2)(Ph(2)pz)(2)] (97%), [Li(THF)][AlH(Ph(2)pz)(3)] (96%), [Li(THF)(4)][Al(Ph(2)pz)(4)] (95%), and [Li(THF)][AlH(iPr(2)pz)(3)] (89%). The treatment of ZnCl(2) with [Li(THF)][AlH(Ph(2)pz)(3)] afforded Zn(AlH(Ph(2)Pz)(3))H (70%). X-ray crystal structures of these complexes demonstrated κ(2) or κ(3) coordination of the aluminum-based ligands to the Li or Zn ions. The treatment of [Li(THF)][AlH(Ph(2)pz)(3)] with MgBr(2) or CoCl(2) in THF/Et(2)O solutions, by contrast, afforded the pyrazolate transfer products Mg(2)Br(2)(Ph(2)pz)(2)(THF)(3)·2THF (25%) and Co(2)Cl(2)(Ph(2)pz)(2)(THF)(3)·THF (23%) as colorless and blue crystalline solids, respectively. An analogous treatment of [Li(THF)][AlH(Ph(2)pz)(3)] with MCl(2) (M = Mn, Fe, Ni, Cu) afforded metal powders and H(2), illustrating hydride transfer from Al to M as a competing reaction path.  相似文献   

10.
Zhu H  Chen EY 《Inorganic chemistry》2007,46(4):1481-1487
The synthesis and structural elucidations of novel boron and aluminum complexes incorporating the tripodal triamido [N3]3- ligand framework that is hypothesized to promote the preorganized pyramidal geometry for high Lewis acidity are reported. Salt metathesis between the in situ-generated trianionic lithium complexes of the tripodal amido ligands with BCl3 leads to boranes HC[SiMe2N(4-MeC6H4)]3B (1) and MeSi[SiMe2N(4-MeC6H4)]3B (2); however, substitution of the N-Ar group with the bulky tBu affords the unexpected non-boron-containing LiCl adduct {[HC(SiMe2NtBu)2(SiMeNtBu)]Li3(Et2O)Cl}2 (3) via apparent elimination of MeBCl2. The products derived from the salt metathesis reaction with AlCl3 are determined by the reaction medium: while the reaction in a hexanes-ether mixture or toluene affords solvated salt adduct HC[SiMe2N(4-MeC6H4)]3Al.ClLi(Et2O)2 (4) or salt adduct HC[SiMe2N(4-MeC6H4)]3Al.ClLi (5), respectively; the addition of a small amount of THF produces a mixture of complexes HC[SiMe2N(4-MeC6H4)]3Al.(THF) (6, major) and HC[SiMe2N(4-MeC6H4)]3Al(OCH=CH2).Li(THF)2 (7, minor). The desired complex 6 can be exclusively formed using HC[SiMe2N(4-MeC6H4)]3Li3.(THF)3 and the hexanes-ether mixture solvent. The molecular structures of complexes 1, 3, 5, 6, and 7 have been elucidated by X-ray diffraction studies. The structure of 1 shows an approximately trigonal pyramidal geometry at B with no significant N-B p-p pi-interactions. The strong salt adduct and solvate formation of the tripodal amido Al complex, as well as its similarity to the strong Lewis acid Al(C6F5)3 in the THF adduct and enolaluminate formation and structure, indicate the desired core structure [N3]Al is indeed highly Lewis acidic.  相似文献   

11.
A series of sterically varied aryl alcohols H-OAr [OAr = OC6H5 (OPh), OC6H4(2-Me) (oMP), OC6H3(2,6-(Me))2 (DMP), OC6H4(2-Pr(i)) (oPP), OC6H3(2,6-(Pr(i)))2 (DIP), OC6H4(2-Bu(t)) (oBP), OC6H3(2,6-(Bu(t)))2 (DBP); Me = CH3, Pr(i) = CHMe2, and Bu(t) = CMe3] were reacted with LiN(SiMe3)2 in a Lewis basic solvent [tetrahydrofuran (THF) or pyridine (py)] to generate the appropriate "Li(OAr)(solv)x". In the presence of THF, the OPh derivative was previously identified as the hexagonal prismatic complex [Li(OPh)(THF)]6; however, the structure isolated from the above route proved to be the tetranuclear species [Li(OPh)(THF)]4 (1). The other "Li(OAr)(THF)x" products isolated were characterized by single-crystal X-ray diffraction as [Li(OAr)(THF)]4 [OAr = oMP (2), DMP (3), oPP (4)], [Li(DIP)(THF)]3 (5), [Li(oBP)(THF)2]2, (6), and [Li(DBP)(THF)]2, (7). The tetranuclear species (1-4) consist of symmetric cubes of alternating tetrahedral Li and pyramidal O atoms, with terminal THF solvent molecules bound to each metal center. The trinuclear species 5 consists of a six-membered ring of alternating trigonal planar Li and bridging O atoms, with one THF solvent molecule bound to each metal center. Compound 6 possesses two Li atoms that adopt tetrahedral geometries involving two bridging oBP and two terminal THF ligands. The structure of 7 was identical to the previously reported [Li(DBP)(THF)]2 species, but different unit cell parameters were observed. Compound 7 varies from 6 in that only one solvent molecule is bound to each Li metal center of 7 because of the steric bulk of the DBP ligand. In contrast to the structurally diverse THF adducts, when py was used as the solvent, the appropriate "Li(OAr)(py)x" complexes were isolated as [Li(OAr)(py)2]2 (OAr = OPh (8), oMP (9), DMP (10), oPP (11), DIP (12), oBP (13)) and [Li(DBP)(py)]2 (14). Compounds 8-13 adopt a dinuclear, edge-shared tetrahedral complex. For 14, because of the steric crowding of the DBP ligand, only one py is coordinated, yielding a dinuclear fused trigonal planar arrangement. Two additional structure types were also characterized for the DIP ligand: [Li(DIP)(H-DIP)(py)]2 (12b) and [Li2(DIP)2(py)3] (12c). Multinuclear (6,7Li and 13C) solid-state MAS NMR spectroscopic studies indicate that the bulk powder possesses several Li environments for "transitional ligands" of the THF complexes; however, the py adducts possess only one Li environment, which is consistent with the solid-state structures. Solution NMR studies indicate that "transitional" compounds of the THF precursors display multiple species in solution whereas the py adducts display only one lithium environment.  相似文献   

12.
Lithium TMP-aluminate "(i)Bu(3)Al(TMP)Li" undergoes dismutation in THF solution to precipitate the tetraalkylaluminate [{Li.(THF)(4)}(+){Al((i)Bu)(4)}(-)], but reacts kinetically as a TMP base towards N,N-diisopropylbenzamide to afford the crystalline ortho-aluminated species [(THF)(3).Li{O([=C)N((i)Pr)(2)(C(6)H(4))}Al((i)Bu)(3)] and TMPH.  相似文献   

13.
The novel directed ortho metalation (DoM) reagents for functionalized aromatic rings, TMP-Zn-ates (R2Zn(TMP)Li (R = Me, 1; tBu, 2)), have been reported to be synthetically useful for the chemo- and regioselective construction of multi-functionalized aromatic compounds. Here, we present the first comprehensive structural and mechanistic investigation by means of X-ray, NMR, and DFT studies on the DoM reaction employing our original TMP-Zn-ate base. The structures of TMP-Zn-ates in solution and in the solid state were determined. The DFT study strongly suggested that the deprotonation involving the TMP ligand on the TMP-Zn-ate is kinetically more favorable than that involving the alkyl ligand, and this view was supported by monitoring of the 13C NMR spectrum of the reaction mixture.  相似文献   

14.
Two unique adducts of an oxozinc carboxylate cluster with H(2)O and THF were isolated and structurally characterized, [Zn(4)(μ(4)-O)(O(2)CR)(6)(H(2)O)(THF)]·2(THF) and [Zn(4)(μ(4)-O)(O(2)CR')(6)(THF)(3)] (where R = benzoate and R' = 9-antracenecarboxylate anion). The study shows that the zinc centers of the Zn(4)O core can easily form unique coordination environments without breaking of the Zn-O(carboxylate) bonds.  相似文献   

15.
Reactions of the silylene Si[(NCH2Bu(t))2C6H4-1,2], [Si(NN)], with NaOMe, excess Na or 1/3 Na yield the X-ray-characterised crystalline compounds [Na(micro-Si(NN)OMe)(THF)(OEt2)]2 (2b), [Na(THF)2Si(NN)]2 (3) and [Na(THF)4][(Si(NN))3-c] (4).  相似文献   

16.
A straightforward method for the synthesis of enantiomerically pure bis(valine)metallocenes is presented. Derivatives of lithium cyclopentadienylvaline 1a, b were obtained by addition of the (R)- or (S)-Sch?llkopf reagents to 6,6-dimethylfulvene as single enantiomers and gave with FeCl2 or [RuCl2(dmso)4] the chiral metallocenes [Fe[C5H4-CMe2-[C4H2N2(OMe)2iPr]]2] (2a, b) and [Ru[C5H4-CMe2-[C4H2N2(OMe)2iPr]]2] (3a, b). Complex 2b was hydrolyzed to the ferrocenylene-bis(valine-methylester) [[Fe[C5H4-CMe2-CH(NH3+)COOMe]2]2+(Cl-)2] (7) without racemization. Complex 7 could be used as ligand and was treated with [[Cp*IrCl2]2] to afford [Fe[C5H4-CMe2-CH(COOMe)(NH2-IrCp*Cl2)]2] (10). The reactions of 1 with CoCl2, [Re(CO)5Br], [[(cod)RhCl2]2] (cod= 1,5-cyclooctadiene) or [Cp*MCl3] (M= Ti, Zr) gave the cyclopentadienyl complexes [[Co[C5H4-CMe2-[C4H2N2(OMe)2iPr]]2]+ I-] (11) and [Re[C5H4-CMe2-[C4H2N2(OMe)2iPr]](CO)3] (13), [(C8H12)Rh[C5H4-CMe2-[C4H2N2(OMe)2(iPr)]]] (14). [[Rh[C5H4-CMe2-[C4H2N2(OMe)2(iPr)]]I]2(mu-I)2] (15), [Cp*Cl2Ti-[C5H4-CMe2-[C4H2N2(OMe)2(iPr)]]] (16), and [Cp*Cl2Zr[C5H4-CMe2-[C4H2N2(OMe)2(iPr)]]] (17), with chiral valine derivatives as substituents on the cyclopentadienyl ring and with excellent diastereoselectivities. Also the Seebach reagent (Boc-BMI) or O'Donnell reagent could be added to 6,6-dimethylfulvene to give the lithium cyclopentadienides Li[C5H4-CMe2-[C3H2(tBu)(N-Boc)(NMe)O]] (18) and Li[C5H4-CMe2-CH(NCPh2)(COOEt)] (21), which formed the ferrocene derivatives [Fe[C5H4-CMe2-[C3H2(tBu)(N-Boc)(NMe)O]]2] (19) and [Fe[C5H4-CMe2-CH(NCPh2)(COOEt)]2] (22). The stable cobaltocinium cation in 11 and the complex 19 could be hydrolyzed to the metallocenes 12 and [Fe(C5H4-CMe2-CH(NH3+)(COO-)]2] (20) with two valines in the 1,1'-position. The structures of 2a, b, 11, 15, and 16 were determined by X-ray diffraction and confirm the diastereomeric purity of the compounds.  相似文献   

17.
Sterically demanding secondary phosphines and phosphides react with (THF)B(C(6)F(5))(3) (THF = tetrahydrofuran) to give the THF ring-opened compounds [R(2)PHC(4)H(8)OB(C(6)F(5))(3)] and [Mes(2)PC(4)H(8)OB(C(6)F(5))(3)Li(THF)(2)] (Mes = C(6)H(2)Me-2,4,6). These reactions also occur consecutively to give the double THF ring-opened compounds [Mes(2)P(C(4)H(8)OB(C(6)F(5))(3))(2)][Li(THF)(4)] and [t-Bu(2)P(C(4)H(8)OB(C(6)F(5))(3))(2)Li].  相似文献   

18.
Oxidation of [Li(DME)(3)][U(CH(2)SiMe(3))(5)] with 0.5 equiv of I(2), followed by immediate addition of LiCH(2)SiMe(3), affords the high-valent homoleptic U(V) alkyl complex [Li(THF)(4)][U(CH(2)SiMe(3))(6)] (1) in 82% yield. In the solid-state, 1 adopts an octahedral geometry as shown by X-ray crystallographic analysis. Addition of 2 equiv of tert-butanol to [Li(DME)(3)][U(CH(2)SiMe(3))(5)] generates the heteroleptic U(IV) complex [Li(DME)(3)][U(O(t)Bu)(2)(CH(2)SiMe(3))(3)] (2) in high yield. Treatment of 2 with AgOTf fails to produce a U(V) derivative, but instead affords the U(IV) complex (Me(3)SiCH(2))Ag(μ-CH(2)SiMe(3))U(CH(2)SiMe(3))(O(t)Bu)(2)(DME) (3) in 64% yield. Complex 3 has been characterized by X-ray crystallography and is marked by a uranium-silver bond. In contrast, oxidation of 2 can be achieved via reaction with 0.5 equiv of Me(3)NO, producing the heteroleptic U(V) complex [Li(DME)(3)][U(O(t)Bu)(2)(CH(2)SiMe(3))(4)] (4) in moderate yield. We have also attempted the one-electron oxidation of complex 1. Thus, oxidation of 1 with U(O(t)Bu)(6) results in formation of a rare U(VI) alkyl complex, U(CH(2)SiMe(3))(6) (6), which is only stable below -25 °C. Additionally, the electronic properties of 1-4 have been assessed by SQUID magnetometry, while a DFT analysis of complexes 1 and 6 is also provided.  相似文献   

19.
Reaction of aryllithium reagents LiR (R = C(6)H(4)((R)-CH(Me)NMe(2))-2 (1a), C(6)H(3)(CH(2)NMe(2))(2)-2,6 (1b), C(6)H(4)(CH(2)N(Me)CH(2)CH(2)OMe)-2 (1c)) with 1 equiv of sulfur (1/8 S(8)) results in the quantitative formation of the corresponding lithium arenethiolates [Li{SC(6)H(4)((R)-CH(Me)NMe(2))-2}](6) (3), [Li{SC(6)H(3)(CH(2)NMe(2))(2)-2,6}](6) (4), and [Li{SC(6)H(4)(CH(2)N(Me)CH(2)CH(2)OMe)-2}](2) (5). Alternatively, 3 can be prepared by reacting the corresponding arenethiol HSC(6)H(4)((R)-CH(Me)NMe(2))-2 (2) with (n)BuLi. X-ray crystal structures of lithium arenethiolates 3 and 4, reported in abbreviated form, show them to have hexanuclear prismatic and hexanuclear planar structures, respectively, that are unprecedented in lithium thiolate chemistry. The lithium arenethiolate [Li{SC(6)H(4)(CH(2)N(Me)CH(2)CH(2)OMe)-2}](2) (5) is dimeric in the solid state and in solution, and crystals of 5 are monoclinic, space group P2(1)/c, with a = 17.7963(9) ?, b = 8.1281(7) ?, c = 17.1340(10) ?, beta = 108.288(5) degrees, Z = 4, and final R = 0.047 for 4051 reflections with F > 4sigma(F). Hexameric 4 reacts with 1 equiv of lithium iodide and 2 equiv of tetrahydrofuran to form the dinuclear adduct [Li(2)(SAr)(I)(THF)(2)] (6). Crystals of 6 are monoclinic, space group P2(1)/c, with a = 13.0346(10) ?, b = 11.523(3) ?, c = 16.127(3) ?, beta = 94.682(10) degrees, Z = 4, and final R = 0.059 for 3190 reflections with F > 4sigma(F).  相似文献   

20.
Two lithium sulfenamides were prepared by reaction of (CH(3))(3)C-N(H)-S-C(6)H(4)CH(3)-4 (1) and 4-CH(3)C(6)H(4)-N(H)-S-C(6)H(4)CH(3)-4 (2) with an alkyllithium. The unsolvated sulfenamide Li[(CH(3))(3)C-NS-C(6)H(4)CH(3)-4] (3) was soluble enough for variable-temperature (VT) (7)Li NMR to provide evidence of a dynamic exchange of oligomers in solution. The crystal structures of the solvated sulfenamides of [Li(2)(eta(2)-(CH(3))(3)C-NS-C(6)H(4)CH(3)-4)(2)(THF)(2)] (4) and of [Li(2)(eta(1)-4-CH(3)C(6)H(4)-NS-C(6)H(4)CH(3)-4)(2)(THF)(4)] (6) consisted of dimers in which the anions display different hapticities. The VT (7)Li NMR spectra of 4 suggest that the two different structures exist in equilibrium in toluene-THF mixtures. These compounds are easily oxidized to the neutral thioaminyl radicals as identified by EPR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号