首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Physics letters. A》2006,353(5):427-430
In this Letter we discuss squeezing state of magnon in ferromagnet, which permits a reduction in the quantum fluctuation of the spin component to below the zero-point quantum noise level of coherent magnon states. We investigate the generation of squeezed magnon state through calculating the expectation values of spin component fluctuation. The mean field theory is introduced in dealing with the nonlinear interaction terms of Hamiltonian of magnon system.  相似文献   

2.
In this paper, we discuss squeezed thermal spin states of magnons that are described by the Heisenberg Hamiltonian in the ferromagnet, in which the magnon system possesses a new kind of quasiparticle, which we call ferromagnon, i.e. a “dressed” quasi-particle obtained from the magnons by a Bogoliubov-Valatin transformation . Generally, the mass and noise properties of ferromagnons possess potentially important and novel effects in condensed matter physics, which have extensive application in the fields of science and technology. Moreover, it is convenient to introduce the Holstein-Primakoff method, in order to take into account the nonlinear interaction among spin waves. At last we describe the quantum fluctuations of spin-components in the squeezed thermal spin states of magnons and their temperature-dependence. Below some temperature, the squeezed thermal spin states of ferromagnons show squeeze effect.  相似文献   

3.
《Comptes Rendus Physique》2016,17(7):729-739
The techniques of microwave quantum optics are applied to collective spin excitations in a macroscopic sphere of a ferromagnetic insulator. We demonstrate, in the single-magnon limit, strong coupling between a magnetostatic mode in the sphere and a microwave cavity mode. Moreover, we introduce a superconducting qubit in the cavity and couple the qubit with the magnon excitation via the virtual photon excitation. We observe the magnon–vacuum-induced Rabi splitting. The hybrid quantum system enables generation and characterization of non-classical quantum states of magnons.  相似文献   

4.
5.
The magnon energy spectra, the sublayer magnetization and the quantum fluctuations in a ferrimagnetic superlattice consisting of four different magnetic sublayers are studied by employing the linear spin-wave approach and Green's function technique. The effects of the interlayer exchange couplings and the spin quantum numbers on the sublayer magnetization and the quantum fluctuations of the systems are discussed for three different spin configurations. The roles of quantum competitions among the interlayer exchange couplings and the symmetry of the different spin configurations have been understood. The magnetizations of some sublayers increase monotonously, while those of others can exhibit their maximum, and the quantum fluctuations of the whole superlattice system can show a minimum when one of the antiferromagnetic interlayer exchange couplings increases. This is due to the quantum competition/transmission of effects of the interlayer exchange couplings. When the spin quantum number of sublayers varies, the system goes through from a quantum region of small spin numbers to a classical region of large spin numbers. The quantum fluctuations of the system exhibit a maximum as a function of the spin quantum number of a sublayer, which is related with higher symmetry of the system. It belongs to the type III Shubnikov group of magnetic groups. This magnetically structural symmetry consists of not only the symmetry of space group, but also the symmetry of the direction and strength of spins.  相似文献   

6.
7.
The frequency in middle of magnon energy band in a five-layer ferromagnetic superlattice is studied by using the linear spin-wave approach and Green's function technique. It is found that four energy gaps and corresponding four frequencie in middle of energy gaps exist in the magnon band along Kx direction perpendicular to the superlattice plane. The spin quantum numbers and the interlayer exchange couplings all affect the four frequencies in middle of the energy gaps. When all interlayer exchange couplings are same, the effect of spin quantum numbers on the frequency wg1 in middle of the energy gap Δw12 is complicated, and the frequency wg1 depends on the match of spin quantum numbers in each layer. Meanwhile, the frequencies wg2, wg3, and wg4 in middle of other energy gaps increase monotonously with increasing spin quantum numbers. When the spin quantum numbers in each layer are same, the frequencies wg1, wg2, wg3, and wg4 all increase monotonously with increasing interlayer exchange couplings.  相似文献   

8.
Le-Tian Zhu 《中国物理 B》2022,31(12):120302-120302
Single-electron spins in quantum dots are the leading platform for qubits, while magnons in solids are one of the emerging candidates for quantum technologies. How to manipulate a composite system composed of both systems is an outstanding challenge. Here, we use spin-charge hybridization to effectively couple the single-electron spin state in quantum dots to the cavity and further to the magnons. Through this coupling, quantum dots can entangle and detect magnon states. The detection efficiency can reach 0.94 in a realistic experimental situation. We also demonstrate the electrical tunability of the scheme for various parameters. These results pave a practical pathway for applications of composite systems based on quantum dots and magnons.  相似文献   

9.
We study nonequilibrium quantum transport through a mesoscopic wire coupled via local exchange to a ferromagnetic spin chain. Using the Keldysh formalism in the self-consistent Born approximation, we identify fingerprints of the magnetic polaron state formed by hybridization of electronic and magnon states. Because of its low decoherence rate, we find coherent transport signals. Both elastic and inelastic peaks of the differential conductance are discussed as a function of external magnetic fields, the polarization of the leads, and the electronic level spacing of the wire.  相似文献   

10.
Molecular nanomagnets, besides promising to open new frontiers in technology, have attracted huge interest in the scientific community because they can exhibit the phenomenon known as quantum tunnelling of the magnetization, i.e. coherent fluctuations of the direction of the total spin vector. In this paper we study a different quantum phenomenon involving fluctuations of the magnitude of the total spin vector. These fluctuations are related to the mixing between states with different spin quantum number, and imply new macroscopic effects, which we theoretically investigated in the Mn-[ grid.Received: 9 October 2003, Published online: 8 December 2003PACS: 75.45. + j Macroscopic quantum phenomena in magnetic systems - 75.50.Xx Molecular magnets - 52.70.Ds Electric and magnetic measurements  相似文献   

11.
12.
The vacuum Rabi splitting and Kerr effect are investigated theoretically in a hybrid spin–magnon–photon system, where the nitrogen-vacancy center in diamond driven by two light fields is coupled to a spherical micromagnet embedded in a superconducting coplanar waveguide resonator. The results indicate that the phenomenon of the Mollow triplet and vacuum Rabi splitting can appear by controlling the spin–magnon coupling and magnon–photon coupling. It is shown that the probe absorption spectrum can be adjusted effectively via the pump frequency detuning. Moreover, it is demonstrated that the optical Kerr effect can be tuned by changing the Rabi frequency. This work may provide a possibility for the applications in quantum information processing and quantum sensing of magnetic signal.  相似文献   

13.
We consider a triple quantum dot system in a triangular geometry with one of the dots connected to metallic leads. Using Wilson’s numerical renormalization group method, we investigate quantum entanglement and its relation to the thermodynamic and transport properties in the regime where each of the dots is singly occupied on average, but with non-negligible charge fluctuations. It is shown that even in the regime of significant charge fluctuations the formation of the Kondo singlets induces switching between separable and perfectly entangled states. The quantum phase transition between unentangled and entangled states is analyzed quantitatively and the corresponding phase diagram is explained by exactly solvable spin model. In the framework of an effective model we also explain smearing of the entanglement transition for cases when the symmetry of the triple quantum dot system is relaxed.  相似文献   

14.
We propose a Ginzburg-Landau-type approximation for the local Gibbs states for quantum mean-field models that leads to the exact thermodynamics. Using this approach, we compute the spin fluctuations for some spin-1/2 models. At the critical temperature we find explicitly the distribution function showing abnormal fluctuations.On leave from the University of Torun, Poland.  相似文献   

15.
We have observed sub-Poissonian spin correlations generated by collisionally induced spin mixing in a spin-1 Bose-Einstein condensate. We measure a quantum noise reduction of -7 dB (-10 dB corrected for detection noise) below the standard quantum limit for the corresponding coherent spin states. The spin fluctuations are detected as atom number differences in the spin states using fluorescent imaging that achieves a detection noise floor of 8 atoms per spin component for a probe time of 100 μs.  相似文献   

16.
The coherent quantum state of magnons—Bose–Einstein condensate (BEC) has been observed in several types of antiferromagnets. According to the Bose statistics of magnons, BEC appears when the magnon density exceeds the critical density N BEC and the magnon gas condenses to a quantum liquid. The BEC state is characterized by a coherent precession of the magnetization. In this paper, the first experiments showing the suppression of the spin echo signal by the magnon BEC is presented. These experiments confirm the coherence of magnetic excitations in the BEC state.  相似文献   

17.
The correlated motion of electrons in metallic ferromagnets is investigated in terms of a realistic interacting-electron model with N-fold orbital degeneracy and intra-orbital (U) and inter-orbital (J) Coulomb interactions. Correlation-induced self-energy and vertex corrections are incorporated systematically to provide a non-perturbative Goldstone-mode-preserving scheme. An effective quantum parameter [U2+(N-1)J2]/[U+(N-1)J]2 is obtained which determines, in analogy with 1/S for quantum spin systems and 1/N for the N-orbital Hubbard model, the strength of correlation-induced quantum corrections to magnetic excitations. The rapid suppression of this quantum parameter with Hund's coupling J, especially for large N, provides fundamental insight into the phenomenon of strong stabilization of metallic ferromagnetism by orbital degeneracy and Hund's coupling. Correlation effects are investigated for spin stiffness, magnon dispersion, electronic spectral function, density of states, and finite-temperature spin dynamics using realistic bandwidth, interaction, and lattice parameters for iron.  相似文献   

18.
A theoretical model is presented for the study of the magnetic properties and the coherent magnon transport via monatomic chains in ultrathin magnetic films. In particular, we studied a finite number of monatomic chains joining two slabs of ferromagnetic material. Each slab consists of five atomic layers of a cubic lattice with magnetically ordered spins coupled by the Heisenberg exchange. The system is supported on a non-magnetic substrate and otherwise considered free from magnetic interactions. The spin dynamics of the ultrathin film is studied by the matching method. The individual and the total magnon transmissions of the ultrathin ferromagnetic film, scattering coherently at the nanojunction zone, and the localized spin states in the boundary domain are calculated and analyzed. The interatomic magnetic exchange is varied on the boundary domain specifically for three cases of magnetic exchange to investigate the consequences of magnetic softening and hardening for the calculated properties. Numerical results show characteristic interference effects between the incident spinwaves and the localized spin states of the nanocontact. The calculated properties are presented for arbitrary incidence of the magnons on the boundary, for all accessible frequencies in the propagating bands, and for the interatomic magnetic exchange of the magnetic film. The localized magnon branches created by the nanocontact domain are observed in the Brillouin zone.  相似文献   

19.
We present a new method to model spin-wave excitations in magnetic solids, based on the Liouville–Lanczos approach to time-dependent density functional perturbation theory. This method avoids computationally expensive sums over empty states and naturally deals with the coupling between spin and charge fluctuations, without ever explicitly computing charge-density susceptibilities. Spin-wave excitations are obtained with one Lanczos chain per magnon wave-number and polarization, avoiding the solution of the linear-response problem for every individual value of frequency, as other state-of-the-art approaches do. Our method is validated by computing magnon dispersions in bulk Fe and Ni, resulting in agreement with previous theoretical studies in both cases, and with experiment in the case of Fe. The disagreement in the case of Ni is also comparable with that of previous computations.  相似文献   

20.
A consistent theory of the Heisenberg quantum antiferromagnet in the disordered phase with short-range antiferromagnetic order was developed on the basis of the path integral for the spin coherent states. We presented the Lagrangian of the theory in the form that is explicitly invariant under rotations and found natural variables in terms of which one can construct a perturbation theory. The short-wavelength spin fluctuations are similar to the ones in spin-wave theory, and the long-wavelength spin fluctuations are governed by the nonlinear sigma model. We also demonstrated that the short-wavelength spin fluctuations should be considered accurately in the framework of the discrete version in time of the path integral. In the framework of our approach, we obtained the response function for the spin fluctuations for the whole region of the frequency ω and the wave vector k and calculated the free energy of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号