首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We study generalizations of the Darcy, Forchheimer, Brinkman and Stokes problem in which the viscosity and the drag coefficient depend on the shear rate and the pressure. We focus on existence of weak solutions to the problem, with the chief aim to capture as wide a group of viscosities and drag coefficients as mathematically feasible and to provide a theory that holds under minimal, not very restrictive conditions. Even in the case of generalized Stokes system, the established result answers a question on existence of weak solutions that has been open so far.  相似文献   

3.
4.
We consider a general family of regularized Navier–Stokes and Magnetohydrodynamics (MHD) models on n-dimensional smooth compact Riemannian manifolds with or without boundary, with n≥2. This family captures most of the specific regularized models that have been proposed and analyzed in the literature, including the Navier–Stokes equations, the Navier–Stokes-α model, the Leray-α model, the modified Leray-α model, the simplified Bardina model, the Navier–Stokes–Voight model, the Navier–Stokes-α-like models, and certain MHD models, in addition to representing a larger 3-parameter family of models not previously analyzed. This family of models has become particularly important in the development of mathematical and computational models of turbulence. We give a unified analysis of the entire three-parameter family of models using only abstract mapping properties of the principal dissipation and smoothing operators, and then use assumptions about the specific form of the parameterizations, leading to specific models, only when necessary to obtain the sharpest results. We first establish existence and regularity results, and under appropriate assumptions show uniqueness and stability. We then establish some results for singular perturbations, which as special cases include the inviscid limit of viscous models and the α→0 limit in α models. Next, we show existence of a global attractor for the general model, and then give estimates for the dimension of the global attractor and the number of degrees of freedom in terms of a generalized Grashof number. We then establish some results on determining operators for the two distinct subfamilies of dissipative and non-dissipative models. We finish by deriving some new length-scale estimates in terms of the Reynolds number, which allows for recasting the Grashof number-based results into analogous statements involving the Reynolds number. In addition to recovering most of the existing results on existence, regularity, uniqueness, stability, attractor existence, and dimension, and determining operators for the well-known specific members of this family of regularized Navier–Stokes and MHD models, the framework we develop also makes possible a number of new results for all models in the general family, including some new results for several of the well-studied models. Analyzing the more abstract generalized model allows for a simpler analysis that helps bring out the core common structure of the various regularized Navier–Stokes and magnetohydrodynamics models, and also helps clarify the common features of many of the existing and new results. To make the paper reasonably self-contained, we include supporting material on spaces involving time, Sobolev spaces, and Grönwall-type inequalities.  相似文献   

5.
6.
Radiant spherical suspensions have an ε-periodic distribution in a tridimensional incompressible viscous fluid governed by the Stokes–Boussinesq system. We perform the homogenization procedure when the radius of the solid spheres is of order ε3 (the critical size of perforations for the Navier-Stokes system) and when the ratio of the fluid/solid conductivities is of order ε6, the order of the total volume of suspensions. Adapting the methods used in the study of small inclusions, we prove that the macroscopic behavior is described by a Brinkman–Boussinesq type law and two coupled heat equations, where certain capacities of the suspensions and of the radiant sources appear.  相似文献   

7.
The existence of suitable weak solutions of 3D Navier–Stokes equations, driven by a random body force, is proved. These solutions satisfy a local balance of energy. Existence of statistically stationary solutions is also proved.  相似文献   

8.
9.
Convergence and conditioning results are presented for the lowest-order member of a family of Nyström methods for arbitrary, exterior, three-dimensional Stokes flow. The flow problem is formulated in terms of a recently introduced two-parameter, weakly singular boundary integral equation of the second kind. In contrast to methods based on product integration, coordinate transformation and singularity subtraction, the family of Nyström methods considered here is based on a local polynomial correction determined by an auxiliary system of moment equations. The polynomial correction is designed to remove the weak singularity in the integral equation and provide control over the approximation error. Here we focus attention on the lowest-order method of the family, whose implementation is especially simple. We outline a convergence theorem for this method and illustrate it with various numerical examples. Our examples show that well-conditioned, accurate approximations can be obtained with reasonable meshes for a range of different geometries.  相似文献   

10.
11.
We establish a connection between the strong solution to the spatially periodic Navier–Stokes equations and a solution to a system of forward–backward stochastic differential equations (FBSDEs) on the group of volume-preserving diffeomorphisms of a flat torus. We construct representations of the strong solution to the Navier–Stokes equations in terms of diffusion processes.  相似文献   

12.
These notes concern existence, and suitable formulation, of meaningful conditions on the direction of the vorticity which guarantee the regularity of the solutions to the evolution Navier–Stokes equations. A main concern here is to compare the different situations which appear in considering slip and no-slip boundary conditions. The paper reviews mainly results obtained in some of the references cited.  相似文献   

13.
Doklady Mathematics - New kinetic equations are proposed from which the incompressible Euler and Navier–Stokes equations are derived by making an exact substitution. A class of exact...  相似文献   

14.
Finite volume element method for the Stokes problem is considered. We use a conforming piecewise linear function on a fine grid for velocity and piecewise constant element on a coarse grid for pressure. For general triangulation we prove the equivalence of the finite volume element method and a saddle-point problem, the inf-sup condition and the uniqueness of the approximation solution. We also give the optimal order H^1 norm error estimate. For two widely used dual meshes we give the L^2 norm error estimates, which is optimal in one case and quasi-optimal in another ease. Finally we give a numerical example.  相似文献   

15.
We consider the two-dimensional motion of a rigid structure immersed in an incompressible fluid governed by Navier–Stokes equations. The control force acts on a fixed subset of the fluid domain. We prove that our system is null controllable; that is, for small initial data, the system can be driven at rest and the structure can be driven to the origin at a given T>0. The result holds for a structure symmetric with respect to the center of mass and for initial conditions satisfying strong compatibility conditions. To cite this article: M. Boulakia, A. Osses, C. R. Acad. Sci. Paris, Ser. I 343 (2006).  相似文献   

16.
17.
In this paper, the blood flow problem is considered in a blood vessel, and a coupling system of Navier–Stokes equations and linear elastic equations, Navier–Lame equations, in a cylinder with cylindrical elastic shell is given as the governing equations of the problem. We provide two finite element models to simulating the three-dimensional Navier–Stokes equations in the cylinder while the asymptotic expansion method is used to solving the linearly elastic shell equations. Specifically, in order to discrete the Navier–Stokes equations, the dimensional splitting strategy is constructed under the cylinder coordinate system. The spectral method is adopted along the rotation direction while the finite element method is used along the other directions. By using the above strategy, we get a series of two-dimensional-three-components (2D-3C) fluid problems. By introduce the S-coordinate system in E3 and employ the thickness of blood vessel wall as the expanding parameter, the asymptotic expansion method can be established to approximate the solution of the 3D elastic problem. The interface contact conditions can be treated exactly based on the knowledge of tensor analysis. Finally, numerical test shows that our method is reasonable.  相似文献   

18.
Consider the stationary motion of an incompressible Navier–Stokes fluid around a rotating body $ \mathcal{K} = \mathbb{R}^3 \, \backslash \, {\Omega}$ which is also moving in the direction of the axis of rotation. We assume that the translational and angular velocities U, ω are constant and the external force is given by f = div F. Then the motion is described by a variant of the stationary Navier–Stokes equations on the exterior domain Ω for the unknown velocity u and pressure p, with U, ω, F being the data. We first prove the existence of at least one solution (u, p) satisfying ${\nabla u, p \in L_{3/2, \infty} (\Omega)}$ and ${u \in L_3, \infty (\Omega)}$ under the smallness condition on ${|U| + |\omega| + ||F||_{L_{3/2, \infty} (\Omega)}}$ . Then the uniqueness is shown for solutions (u, p) satisfying ${\nabla u, p \in L_{3/2, \infty} (\Omega) \cap L_{q, r} (\Omega)}$ and ${u \in L_{3, \infty} (\Omega) \cap L_{q*, r} (\Omega)}$ provided that 3/2 <? q <? 3 and ${{F \in L_{3/2, \infty} (\Omega) \cap L_{q, r} (\Omega)}}$ . Here L q,r (Ω) denotes the well-known Lorentz space and q* =? 3q /(3 ? q) is the Sobolev exponent to q.  相似文献   

19.
We study bounded ancient solutions of the Navier–Stokes equations. These are solutions with bounded velocity defined in R n × (−1, 0). In two space dimensions we prove that such solutions are either constant or of the form u(x, t) = b(t), depending on the exact definition of admissible solutions. The general 3-dimensional problem seems to be out of reach of existing techniques, but partial results can be obtained in the case of axisymmetric solutions. We apply these results to some scenarios of potential singularity formation for axi-symmetric solutions, and obtain extensions of results in a recent paper by Chen, Strain, Tsai and Yau [4].  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号