首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of amino acids, phenylalanine and lysine, and lithium ions on the conformation state of κ carrageenan has been studied by high-sensitivity DSC. The binding constants of lysine and lithium ions with the helical and coil forms of polysaccharide have been measured. The preferential binding of lysine molecules and lithium ions by the helical conformation of κ carrageenan has been demonstrated. The affinity of the helical form of κ carrageenan to lysine is much higher than that to lithium ions. The conformational state of κ carrageenan in the presence of cetyltrimethylammonium bromide has been investigated. The binding of cetyltrimethylammonium by κ carrageenan molecules leads to development of a new ordered structure of the polysaccharide.  相似文献   

2.
The critical role of the Auger parameter in providing insight into both initial state and final state factors affecting measured XPS binding energies is illustrated by analysis of Ni 2p(3/2) and L(3)M(45)M(45) peaks as well as the Auger parameters of nickel alloys, halides, oxide, hydroxide and oxy-hydroxide. Analyses of the metal and alloys are consistent with other works, showing that final state relaxation shifts, ΔR, are determined predominantly by changes in the d electron population and are insensitive to inter-atomic charge transfer. The nickel halide Auger parameters are dominated by initial state effects, Δε, with increasing positive charge on the core nickel ion induced by increasing electronegativity of the ligands. This effect is much greater than the final state shifts; however, the degree of covalency is reflected in the Wagner plot where the more polarizable iodide and bromide have greater ΔR. The initial state shift for NiO is much smaller than those of Ni(OH)(2) or NiOOH and the effective oxidation state is much less than that inferred from the average electronegativity of the ligand(s). Auger parameter analysis indicates that the bonding in NiO appears to have stronger contributions from initial state charge transfer from the oxygen ligands than that in the hydroxide and oxyhydroxide consistent with the considerable differences in the Ni-O bond lengths in these compounds with some relaxation of this state occurring during final state phenomena. The Auger parameter of NiOOH is, however, shifted positively, like the iodide, indicating greater polarizability of the ligands and covalency in this bonding. There is support for more direct use of relative bond lengths in interpreting differences between related compounds rather than more general electronegativity or similar parameters.  相似文献   

3.
In molecular beams, the tertiary amine N,N-dimethylisopropyl amine can form molecular clusters that are evident in photoelectron and mass spectra obtained upon resonant multiphoton ionization via the 3p and 3s Rydberg states. By delaying the ionization pulse from the excitation pulse we follow, in time, the ultrafast energy relaxation dynamics of the 3p to 3s internal conversion and the ensuing cluster evaporation, proton transfer, and structural dynamics. While evaporation of the cluster occurs in the 3s Rydberg state, proton transfer dominates on the ion surface. The mass-spectrum shows protonated species that arise from a proton transfer from the alpha-carbon of the neutral parent molecule to the N-atom of its ionized partner in the dimer. DFT calculations support the proton transfer mechanism between tightly bonded cluster components. The photoelectron spectrum shows broad peaks, ascribed to molecular clusters, which have an instantaneous shift of about 0.5 eV toward lower binding energies. That shift is attributed to the charge redistribution associated with the induced dipoles in surrounding cluster molecules. A time-dependent shift that decreases the Rydberg electron binding energy by a further 0.4 eV arises from the structural reorganization of the cluster solvent molecules as they react to the sudden creation of a charge.  相似文献   

4.
Small‐angle X‐ray scattering by means of synchrotron radiation was used to study the interaction of κ‐ and ι‐carrageenan of different molar mass in the presence of the gel‐inducing ions, K+, with the ionic surfactants cetylpyridinium chloride (CPC) and dodecylpyridinium chloride (DPC). This interaction resulted in a more or less complete shrinking of the gel and in the formation of ordered periodic structures of the surfactant in conjunction with the carrageenan molecules. The influence of the polymer concentration for a given surfactant concentration, the content of surfactant for the same concentration of the polysaccharide, the molar mass, and the linear charge density of the polymer were all investigated. Decreasing the length of the alkyl chain of the surfactant, increasing the charge density of the polymer chain, and increasing the polymer concentration for the samples explored improved the ordering in the carrageenan–surfactant complexes. The structures of the κ‐carrageenan–CPC complexes were investigated as a function of temperature during reversible heating–cooling cycles, and it was shown that the addition of the surfactant lead to a more pronounced temperature stability of polymer network. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2851–2859, 2000  相似文献   

5.
The UV-spectroscopic behavior of KI dissolved in supercritical ammonia enabled us to identify two species that contribute to the optical absorption depending on the fluid density rho1 and the temperature T. At low rho1 and high T, contact ion pairs (CIPs) prevail, while at high density of ammonia, solvent separated ion pairs (SSIPs) and free iodide ions dominate the optical absorption of the solute. The features of the electron excitation process depend on the state of the K+ I- species present. Starting with isolated KI in the vapor, where the process is an interionic charge transfer, when the CIP becomes solvated the UV absorption shifts strongly to the blue. As rho1 increases, the amounts of SSIP and of free iodide increase progressively and their electronic excited states become those characteristic of the charge-transfer-to-solvent process. This study suggests there is a strong influence of the cation on the electronic transition of dissolved iodide when it is forming CIPs. Moreover, the fact that K+-NH3 interaction is much larger than that of I(-)-NH3 suggests that the electronic photoinduced excited state of CIPs is similar to the ground state observed for alkali metals in NH3 clusters.  相似文献   

6.
We use the ab initio density functional theory to calculate the band structure, density of states, charge transfer, charge density difference, binding energy and vibration frequency. We can see that the conduction band through the Fermi level include SWNT/H_2/Li, SWNT/H_2/Al and SWNT/H_2/Ca, which shows a kind of metallic character. The charge distribution and contour plots of charge difference density of ion/H_2/SWNT show charge transfer between ion and H_2 molecules rather than between H_2 and H_2. Meanwhile, the interaction between Al, Ca and H_2 is weaker than that of Li. We can also prove that the ion is the primary reason to the increase of adsorption energy of hydrogen molecule in SWNT. Finally, we calculate the vibration frequency and don't find any imaginary frequency, which proves that the(7,0) SWNT is more stable.  相似文献   

7.
8.
The first electronic transition (?←X?) of liquid water was studied from the perspective of the hydration of cations by analyzing the attenuated total reflection far-ultraviolet (ATR-FUV) spectra of the Group I, II, and XIII metal nitrate electrolyte solutions. The ?←X? transition energies of 1 M electrolyte solutions are higher (Li(+): 8.024 eV and Cs(+): 8.013 eV) than that of pure water (8.010 eV) and linearly correlate with the Gibbs energies of hydration of the cations. The increases in the ?←X? transition energies are mostly attributable to the hydrogen bond formation energies of water molecules in the ground state induced by the presence of the cations. The deviation from the linear relation was observed for the high charge density cations, H(+), Li(+), and Be(2+), which reflects that the electronic energies in the excited states are also perturbed. Quantum chemical calculations show that the ?←X? transition energies of the water-cation complexes depend on the hydration structures of the cations. The calculated ?←X? transition energies of the water molecules hydrating high charge density cations spread more widely than those of the low charge density cations. The calculated transition energy spreads of the water-cation complexes directly correlate with the widths of the ?←X? transition bands measured by ATR-FUV spectroscopy.  相似文献   

9.
Photoluminescence quenching of single dibenzoterrylene (DBT) dye molecules in a polymeric organic light‐emitting diode was utilized to analyze the current dynamics at nanometer resolution. The quenching mechanism of single DBT molecules results from an increase in the triplet‐state population induced by charge carrier recombination on individual guest molecules. As a consequence of the long triplet‐state relaxation time, its population results in a reduced photoluminescence of the dispersed fluorescent dyes. From the decrease in photoluminescence together with photon correlation measurements, we could quantify the local current density and its time‐dependent evolution in the vicinity of the single‐molecule probe. This optical technique establishes a non‐invasive approach to map the time‐resolved current density in organic light‐emitting diodes on the nanometer scale.  相似文献   

10.
11.
The structural conformations of the anionic carrageenan polysaccharides in the presence of monovalent salt close to physiological conditions are studied by atomic force microscopy. Iota‐carrageenan undergoes a coil–helix transition at high ionic strength, whereas lambda‐carrageenan remains in the coiled state. Polymer statistical analysis reveals an increase in persistence length from 22.6±0.2 nm in the random coil, to 26.4±0.2 nm in the ordered helical conformation, indicating an increased rigidity of the helical iota‐carrageenan chains. The many decades‐long debated issue on whether the ordered state can exist as single or double helix, is conclusively resolved by demonstrating the existence of a unimeric helix formed intramolecularly by a single polymer chain.  相似文献   

12.
It has been established that hydrogen bonds control both gelation and helix formation completely in the case of agarose and partially in the case of kappa-carrageenan, the major role belonging in the latter case to the interactions of a polysaccharide with metal ions. Na+ and K+ ions form contact ion pairs with sulphate groups of kappa-carrageenan. It is supposed that an increase in the number of contact ion pairs together with association of macromolecules having unordered conformation, a decrease in the second virial coefficient, and a decrease in the refraction index increment (i.e., an increase in the solvation degree of dissolved particles) is a necessary condition for forming the kappa-carrageenan gel netwórk. A sufficient condition of kappa-carrageenan gelation is the intermolecular coordination binding of ions such as K+ ions, promoting gelation. The coil-to-helix transition of the polysaccharide is controlled by shielding the charge of kappa-carrageenan-sulphate groups. Hydrophobic interactions proved to be unessential for gelation of either agarose or kappa-carrageenan.  相似文献   

13.
The effect of temperature on the behaviour of iota-carrageenan (CI) 0.1 wt.%/casein micelles (CM) 0–5 wt.% mixtures has been studied using three techniques: confocal laser scanning microscopy (CLSM), differential scanning calorimetry (DSC) and spectrophotometry. The microscopy clearly shows that those mixed systems separate in two phases, one being enriched in CM. It has been shown that the CM concentration seems to have an effect on the extent of the phase separation phenomenon. The DSC experiments show that addition of CM modifies the helix to coil transition temperature of carrageenan. The enthalpy of melting of helices decreases as the CM concentration increases, and the peak is shifted towards higher temperature. Local electrostatic interactions between carrageenan chains and CM have been studied by a spectrophotometric method using methylene blue (MB) properties of absorption. The absorption spectra of MB in presence of CI and CM were compared with the one of MB in presence of carrageenan alone at temperatures above and below the carrageenan coil to helix transition. The modifications of the spectrum by addition of CM are discussed in terms of interactions and rigidification of the carrageenan chains.  相似文献   

14.
Solvation in supercritical water under equilibrium and nonequilibrium conditions is studied via molecular dynamics simulations. The influence of solute charge distributions and solvent density on the solvation structures and dynamics is examined with a diatomic probe solute molecule. It is found that the solvation structure varies dramatically with the solute dipole moment, especially in low-density water, in accord with many previous studies on ion solvation. This electrostrictive effect has important consequences for solvation dynamics. In the case of a nonequilibrium solvent relaxation, if there are sufficiently many water molecules close to the solute at the outset of the relaxation, the solvent response measured as a dynamic Stokes shift is almost completely governed by inertial rotations of these water molecules. By contrast, in the opposite case of a low local solvent density near the solute, not only rotations but also translations of water molecules play an important role in solvent relaxation dynamics. The applicability of a linear response is found to be significantly restricted at low water densities.  相似文献   

15.
The absence of a predetermined helical sense in the polyisocyanates causes the formation of helix reversals which enforce a strong cooperativity for the amplification of chiral effects. The helix reversals though also place a limit on this amplification, a limit which would be eliminated by reducing the helix reversal population. Approaching the liquid crystal state of the polyisocyanates in both dilute and concentrated solutions appears to cause the exclusion of the helix reversals which is consistent with theoretical expectations. Since the linear birefringence of the polyisocyanate solid state precludes optical activity measurements associated with the polymer, we have synthesized hydrogen bonding side chain adapted polyisocyanates which appear by DSC and infra-red criteria to form equilibrium molecular composites with copolymers of vinyl phenol and styrene. The optical activity properties of these composites may offer a new way to probe polymer motion in the solid state.  相似文献   

16.
The symmetrized density matrix renormalization group method is used to study linear and nonlinear optical properties of free base porphine and metalloporphine. Long-range interacting model, namely, Pariser-Parr-Pople model is employed to capture the quantum many-body effect in these systems. The nonlinear optical coefficients are computed within the correction vector method. The computed singlet and triplet low-lying excited state energies and their charge densities are in excellent agreement with experimental as well as many other theoretical results. The rearrangement of the charge density at carbon and nitrogen sites, on excitation, is discussed. From our bond order calculation, we conclude that porphine is well described by the 18-annulenic structure in the ground state and the molecule expands upon excitation. We have modeled the regular metalloporphine by taking an effective electric field due to the metal ion and computed the excitation spectrum. Metalloporphines have D(4h) symmetry and hence have more degenerate excited states. The ground state of metalloporphines shows 20-annulenic structure, as the charge on the metal ion increases. The linear polarizability seems to increase with the charge initially and then saturates. The same trend is observed in third order polarizability coefficients.  相似文献   

17.
Aggregation of methylpyrazinium iodide and its derivatives in chloroform and dichloromethane solutions was studied by EAS and 1H NMR spectroscopy. The isopentylpyrazinium iodide ion quadruple formation constants in solutions were evaluated. Formal extinction coefficient in the outer-sphere charge transfer band maxima does not depend on the degree of aggregation in the system. A model suggested for the formation of ion quadruples in solutions was discussed in terms of the density functional theory and using the X-ray diffraction data for crystalline methylpyrazinium iodides and its derivatives.  相似文献   

18.
We study the solvation of iodide in water using density functional theory based molecular-dynamics simulations. Detailed analysis of the structural and dynamical properties of the first solvation shell is presented, showing a disruptive influence of the ion on the local water structure. Iodide-water hydrogen bonding is weak, compared to water-water hydrogen bonds. This effective repulsive ion-water interaction leads to the formation of a quite unstructured solvation shell. The dynamics of water molecules surrounding the iodide is relatively fast. The intramolecular structural and electronical properties of water molecules around the ion are not affected.  相似文献   

19.
The study of the UV spectroscopic behaviour of alkali metal iodides dissolved in supercritical ammonia showed that two absorbing species contributed to the UV absorption of the solutions. The two species differed in the type of interaction of iodide with the cation, i.e. going from contact ion pairs to free iodide ion, the observed absorption band varied according to the species that prevailed as the solvent density (rho(1)) changed. This experimental evidence was supplemented with molecular dynamics simulations and electronic structure calculations which showed that at very low rho(1) when the contact ion pair is the dominant species, a sudden change from the internal charge transfer photoexcitation route to a charge-transfer-to-solvent transition occurred. This finding emphasized the importance of solvation at very low rho(1) not only for the photoexcitation process, it also allows connecting the thermodynamic behaviour of the solutes in solution with that observed in their vapour phase. We have tried to draw a consistent picture of the available information of UV photoexcitation for iodides in vapour, in solution either forming contact ion pairs or present as free iodide ions, including their behaviour in small clusters of highly polar molecules. The importance of the cation has been clearly shown in this investigation. A relation between the photoexcited electron in contact ion pairs and the solvated electron of alkali metals in small NH(3) clusters has been conjectured.  相似文献   

20.
Heparin-like glycosaminoglycans (HLGAGs) are highly sulfated, linear carbohydrates attached to proteoglycan core proteins and expressed on cell surfaces and in basement membranes. These carbohydrates bind several families of growth factors and growth factor receptors and act as coreceptors for these molecules. Tandem mass spectrometry has the potential to increase our understanding of the biological significance of HLGAG expression by providing a facile means for sequencing these molecules without the need for time-consuming total purification. The challenge for tandem mass spectrometric analysis of HLGAGs is to produce abundant ions derived via glycosidic bond cleavages while minimizing the abundances of ions produced from elimination of the fragile sulfate groups. This work describes the competing fragmentation pathways that result from dissociation of high negative charge state ions generated from HLGAGs. Glycosidic bond cleavage ion formation competes with losses of equivalents of H2SO4, resulting in complex ion patterns. For the most highly sulfated structure examined, an octasulfated tetramer, an unusual loss of charge from the precursor ion was observed, accompanied by low abundance ions originating from subsequent backbone cleavages. These results demonstrate that fragmentation processes competing with glycosidic bond cleavages are more favored for highly sulfated HLGAG ions. In conclusion, reduction of charge-charge repulsions, such as is achieved by pairing the HLGAG ions with metal cations, is necessary in order to minimize the abundances of ions derived via fragmentation processes that compete with glycosidic bond cleavages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号